博士論文

六方晶フェライト Ba(Fe1-xScx)12O19の磁気相図とアンチフェロ磁気相の磁気構造解析

工学・マネジメント専攻丸山 健一指導教員内海重宜

論文著者:工学・マネジメント研究科工学マネジメント専攻

学籍番号: GH19702

氏 名: 丸山 健一

第1章	片	₣論	3
1.1	フェ	<u> </u>	3
1.2	M <u>?</u>	型六方晶フェライト BaFe12O19の結晶・磁気構造	7
1.3	M 🧏	型六方晶フェライト Ba(Fe1-xScx)12O19のヘリカル磁性	0
1.4	M	型六方晶フェライト Ba(Fe1-xScx)12O19 に関するこれまでの研究1	1
1.5	本碩	开究の課題と位置づけ1	5
1.6	Ba([Fe1-xScx)12O19 単結晶試料の育成1	6
1.7	X郑	泉回折法(XRD)による Ba(Fe1-xScx)12O19の評価1	7
1.8	特列	朱環境微小単結晶中性子構造解析装置(SENJU; J-PARC) 2	1
1.9	本矿	开究の目的	6
1.10	予	想される成果	7
第 2 章	N	I 型六方晶フェライト Ba(Fei-xScx)12O19の磁気相図3	1
2.1	緒言	言	1
2.2	磁イ	と測定	2
2.2	2.1	振動試料型磁力計(VSM)3	2
2.2	2.2	SQUID 磁束計3	3
2.2	2.3	ヘリカル磁性材料の磁化曲線3	4
2.3	Ba([Fe1-xScx)12O19の磁化測定	6
2.3	3.1	Ba(Fe1-xScx)12O19の磁化曲線3	6
2.3	3.2	Ba(Fe1-xScx)12O19の磁化の温度変化	8
2.4	中怕	生子回折法	0
2.4	4.1	散乱長	2
2.4	4.2	結晶構造因子4	3
2.4	4.3	磁気構造因子4	5
2.4	4.4	核散乱と磁気散乱	6
2.5	Ba([Fe1-xScx)12O19の中性子回折の温度測定	7
2.5	5.1	室温測定	7
2.5	5.2	温度変化測定5	4
2.6	Ba((Fe1-xScx)12O19の磁気相図6	8
2.7	結言	言 6	9
第3章	B	a(Fe1-xScx)12O19のヘリカル磁性の回転角に関する研究7	2
3.1	緒言	言	2
3.2	Ba([Fe1-xScx)12O19のヘリカル磁性の回転角の算出方法	5

3.3 Ba(Fe1-xScx)12O19のヘリカル磁性の回転角7
3.4 結言
第4章 Ba(Fe _{1-x} Sc _x)12O19のアンチフェロ磁気相の磁気構造解析
4.1 緒言
4.2 結晶および磁気構造解析
4.2.1 データ処理ソフトウェア8
4.2.2 結晶磁気構造解析ソフトウェア84
4.3 Ba(Fe1-xScx)12O19の空間群・格子定数の決定
4.4 BaFe12O19の室温測定の結晶構造解析80
4.5 Ba(Fe1-xScx)12O19のアンチフェロ磁性の構造解析
4.6 超交換相互作用
4.7 BaFe12O19の超交換相互作用90
4.8 Ba(Fe _{1-x} Sc _x)12O19のスピンキャント磁気構造で働く超交換相互作用
4.9 結言
第5章 結論
投稿論文10
学会発表10
謝辞108

第1章 序論

1.1 フェライトの歴史

フェライトは Fe₂O₃ を主成分とする酸化物磁性体であり、その結晶構造および化学組成 は磁気特性を支配する基本的な要素として重視される.実用的なフェライトを結晶構造か ら見たとき立方晶と六方晶に大別できる.六方晶では化学組成が M²⁺O・6Fe₂O₃ であるマグ ネトプラムバイト (M)、立方晶では Me²⁺O・Fe₂O₃ であるスピネル型結晶や R₃F₅O₁₂ で表さ れるガーネット型結晶などに分類される.ここで M²⁺はアルカリ土類金属、Me²⁺は鉄族遷 移金属、R は 3 価の希土類イオンを示す¹⁾.

フェライトについての研究は 18 世紀半ば以降,ごく一部の科学者によって行われてい たが,その後の実用化につながる本格的な研究は,我が国の加藤,武井らによって始めら れた.両氏は研究過程で Co フェライトと鉄フェライトの固溶体を磁界中で冷却すると磁 性が著しく向上するという現象(磁界中冷却効果)を見出した.また Cu フェライトに非 磁性の Zn フェライトを混合して焼成すると,磁性が著しく向上することなどを発見した. フェライトは,それまでの合金磁石とは異なり,セラミックス(酸化物)であること,強磁 性の一種である"フェリ磁性"であることが大きな特徴とされた.このように,フェライ トは科学の領域から技術の領域へと急速な移行を始め,1935年には Co フェライトと鉄フ ェライトからなる永久磁石材料の生産(三菱電機株式会社)と,Cu-Zn フェライトからな る永久磁石材料による磁心材料の生産(現 TDK 株式会社の前身,東京電気化学工業株式会 社の創立による)が開始され,その後,各種生産技術を駆使することで,工業用磁石とし ての大量生産に成功した.これが世界最初のフェライト工業の始まりといわれている¹⁾.

その後もオランダのフィリップス社の著名な研究者らにより Mn-Zn, Ni-Zn フェライト に関する基礎研究が精力的に進められ,また、フランスの L. Néel によりフェリ磁性理論 (1970年ノーベル物理学賞)の発表などがこれに続き、酸化物磁性に関する学問的体系化 が進められていった.こうして 1960年代にエレクトロニクス開花の時代を迎え、フェライ トは、時代のニーズに不可欠な電子材料として、金属材料に比肩するほどの地位を確立す るようになった¹⁾.希土類磁石の実現に続き、現代最強の磁石・ネオジム磁石が発明され た.1900年代中頃には磁石は記録媒体として注目され始めた.デジタル情報化社会におい て、その性能を飛躍的に高めている.パソコンなどに使われるハードディスクドライブ (HDD)では情報を読み出す磁気ヘッドで磁気抵抗の変化を検出し、電気的にディスク上 の磁化パターンを読み出している.磁化変化に対して大きな磁気抵抗変化を得ることで高 容量が実現される.これらの現象は電子の電荷とスピン(磁気)を使ったエレクトロニク ス素子として、現在さらなる研究が望まれている.

私たちの身近に多くみられる永久磁石のバリウムフェライトはマグネトプラムバイト構造をもつ六方晶フェライトである³⁾. この M型六方晶フェライトは前述したように M²⁺O・ 6Fe₂O₃ で表されるが, Mには Sr, Ba, Pb などが入り, それらの化合物を SrM, BaM, PbM と略す.中でも強力な保持力を有し,永久磁石材料として重要視されているものは BaM と SrM である¹⁾.マグネトプラムバイト型のほかに類似する六方晶構造をもつフェライトに 組成と構造により,W,X,Y,Z などの型がある.それらの種類について表 1.1.1 に示す²⁾.

六方晶 フェライト	化学組成	構造ブロックの組み合わせ	単位格子中の 分子式数
S 型	MeFe ₂ O ₄	S	8
M 型	$BaFe_{12}O_{19} = M$	RSR*S*	2
W 型	$BaMe_2Fe_{16}O_{27} = M + S$	RSSR*S*S*	2
Y 型	$Ba_2Me_2Fe_{12}O_{22} = T+S$	(TS) ₃	3
Z 型	$Ba_3Me_2Fe_{24}O_{41} = M+Y$	RSR*S*TS*	2

表 1.1.1 六方晶フェライトの種類 2).

表 1.1.1 の分子式の *Me* は Ni²⁺, Mn²⁺, Co²⁺など 2 価の鉄族遷移金属を表し,3 種の基本 的な構造の組み合わせから成り立っている.即ち,S,S*,R,R*,T,T*は,イオンのサ ブブロック(副格子)を表す.Sブロック(2(*Me*²⁺Fe³⁺2O₄) または 2(Fe³⁺2O₄))は,111 方向に立方最密充填構造を,Rブロック(BaFe₆O₁₁)は,001 方向に六方最密充填構造を形成 する.一方,Tブロック(Ba₂Fe₈O₁₄)は仮想的な構造と組成である.また,R*,S*,T*ブロ ックは, *c*軸に対して R ブロック,Sブロック,Tブロックを 180°回転した構造となる. 例えば M 型六方晶フェライトは,*c*軸方向に R ブロックと S ブロックが交互に 2 回積層し た構造(*SRS*R**)となる.図 1.1.1~図 1.1.5 に代表的な六方晶フェライトの結晶構造図を示 す.

図 1.1.1 S型フェライト ZnFe₂O₄の(a) 結晶単位格子の c 面投影図, (b) 結晶構造

図 1.1.2 M型フェライト BaFe12O19の(a) 結晶単位格子の c 面投影図, (b) 結晶構造

図 1.1.3 W型フェライト BaFe₁₆Mg₂O₂₇の(a) 結晶単位格子の c 面投影図, (b) 結晶構造

図 1.1.4 Y型フェライト Ba₂Zn₂Fe₁₂O₂₂の(a) 結晶単位格子の c 面投影図, (b) 結晶構造

図 1.1.5 Z型フェライト Ba₃Fe₂₄Co₂O₄₁の(a) 結晶単位格子の c 面投影図, (b) 結晶構造

1.2 M型六方晶フェライト BaFe12O19の結晶・磁気構造

磁性酸化物材料の一種である六方晶フェライトは、比較的古くから知られているが、その科学的・工業的重要性から研究が盛んに行われている.六方晶フェライトは、高い磁気 異方性、強い保磁力、高いキュリー温度、低コストなどの特徴があり、さまざまな産業分 野で幅広く応用されている.六方晶フェライトの中でも、M型の BaFe₁₂O₁₉は、DCモータ やスピーカー、磁気記録媒体などのデバイスに広く使用されており、5G 移動通信システム の電磁波吸収材料としても注目されている.

図 1.2.1 は、空間群 $P6_3/mmc$ (No.194) に属する $BaFe_{12}O_{19}$ の単位格子の結晶構造を示している ^{4,5}). 図に示すように単位格子内に 2 分子を含んでいる. イオン半径の大きい Ba^{2+} と O^{2-} は、 $BaFe_{12}O_{19}$ 結晶中の c 軸に沿って密着した最密充填構造を形成している. 一方、 イオン半径の小さい Fe^{3+} は、その周囲の酸素イオンの配置の違いから結晶学的に異なる 5 つのサイトに配置される. すなわち、 O^{2-} イオンを頂点として形成される、八面体の層間である八面体サイト (2a, $4f_2$, 12k)、四面体の層間である四面体サイト ($4f_1$)、5 個の O^{2-} イオンが形成する 5 配位サイト (2b) に配置される. Fe^{3+} は単独で磁気モーメントを持ち、 その値は 5 μ_B である. Fe^{3+} の磁気モーメントの向きは、表 1.2.1 に示すように、2a, 2b, 12k サイトでは c 軸に平行、 $4f_1$ 、 $4f_2$ サイトでは反平行となり、c 軸に平行なフェリ磁性 ($20 \mu_B$) となる ^{4,6}).

図 1.2.1 BaFe₁₂O₁₉の結晶単位格子の結晶構造

図 1.2.2 BaFe12O19の結晶単位格子の c 面投影図

結晶構造	サイト	Feイオン数(スピン)
Octahedral	12 <i>k</i> (Fe5)	6(↑)
	$4f_2$ (Fe4)	2(↓)
	2 <i>a</i> (Fe1)	1(↑)
Tetrahedral	$4f_1(\text{Fe3})$	2(↓)
Bypramid	2 <i>b</i> (Fe2)	1(↑)

表 1.2.1 BaFe12O19の各 Fe サイトの磁気モーメント

1.3 M型六方晶フェライト Ba(Fe1-xScx)12O19のヘリカル磁性

M型六方晶フェライト BaFe12O19に非磁性の Sc³⁺を添加した Ba(Fe1-xScx)12O19は, 非磁性 の Sc³⁺が結晶学的に異なる 5 つの Fe³⁺サイトに分布することで, 異なる磁性を示す. 特に, 六方晶フェライトのヘリカル磁性は強誘電性も同時に示す, マルチフェロイックス物質と して注目されている.

図 1.3.1(a)に, BaFe₁₂O₁₉の結晶単位格子の結晶構造と磁気構造を示す. 左側の数字は, c 軸方向の座標 z である. 矢印は Fe³⁺の磁気モーメントを示しており, c 軸に平行なフェリ 磁性を示している. 右側の矢印の図はそれぞれ, 図 1.3.1(b)磁気モーメントが同一方向を向 くフェリ型, 図 1.3.1(c)磁気モーメントが斜めに配向するヘリカル型, 図 1.3.1(d)磁気モー メントが互いに打ち消しあう反強磁性型における有効磁気モーメントのモデルを示す. 結 晶学的に異なる 5 つの Fe³⁺サイトへの Sc の分布により, これらの異なる磁性を示す. Ba(Fe_{1-x}Sc_x)₁₂O₁₉の示すヘリカル磁性は, 科学的にも工業的にも盛んに研究されている.

図 1.3.1 Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気構造モデル

1.4 M型六方晶フェライト Ba(Fe1-xScx)12O19 に関するこれまでの研究

本研究の主題である, Sc 置換 M 型六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉のこれまでの研究 実績について学術面,及び応用面について解説する.

M型六方晶フェライト Ba(Fe1-xScx)12O19の研究は、1960年代頃から、主にロシアの研究 チームにより行われてきた. Perekalina らは, Ba(Fe_{1-x}Sc_x)₁₂O₁₉の単結晶の磁化と磁気異方 性を調べ, Fe³⁺の磁気モーメントの一部が ab 面方向に平行であると結論づけた ⁷⁾. その後, Aleshko-Ozhevski iらは、単結晶の中性子回折実験を行い、ヘリカル磁性を特徴づける磁気 衛星反射ピークを観測した⁸⁾.図 1.4.1 に、中性子回折実験で観測された Ba(Fe_{1-x}Sc_x)₁₂O₁₉ のヘリカル磁性を示す. それ以来, 磁化測定, 中性子回折, メスバウアー分光法などによ り、Fe³⁺やSc³⁺の分布を含む結晶構造や磁気構造の解析が盛んに行われている.Shchurova らは, 外部磁場によって磁気異方性に大きな差が生じることを観測し, 2 つの磁気副格子 が弱い交換相互作用によって接続されているというモデルを提案した⁹⁾. さらに, Aleshko- $Ozhevski^{u}$ らによる詳細な中性子回折実験では、 Sc^{3+} が最初に八面体の $4f_{2}$ サイトを占め、 その後,双面体の 2b サイトを占めることが明らかにされた^{8,10)}. 多結晶試料^{11,12)}や単結 晶¹³⁾について, メスバウアー分光法を用いて Sc³⁺のサイト選択性を明らかにする試みがな されており,その結果,Sc³⁺は低 Sc 濃度領域で最初に 2b サイトを占有し,その後 4f2 サイ トを占有することが明らかになった.図1.4.2に、観測された Ba(Fe_{1-x}Sc_x)₁₂O₁₉のメスバウ アー分光を示す.これは, Aleshko-Ozhevski ゙」らによって報告された中性子回折の結果と一 致する⁸⁾.

一方、マルチフェロイック材料の研究に関連して、ヘリカル磁性を示す六方晶フェライ ト系で画期的な成果が得られた¹⁴⁻²⁰. 図 1.4.3 に示すようにマルチフェロイックスとは, 電気磁気効果(ME効果)など,異なる性質を併せ持つ物質である.電場による磁性の制御 や磁場による強誘電性の制御などが可能となり、エネルギー散逸の少ない電気的な作用に より磁性を制御できることから,低電力消費の新しい動作原理のデバイスへの応用などが 見込まれている. 巨視的な電気分極を発生させるには、円錐形のスピン構造が重要である ことが明らかになった. 徳永らは, 磁化測定と中性子回折測定により, Ba(Fe1-xScx)12Mg0.5O19 が室温まで縦型の円錐スピン状態であることを示した.図1.4.4に,Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉ の結晶構造、および磁気構造を示す.また、外部磁場により円錐スピン状態を傾けること で, 電気分極を誘起されることが示された²⁰⁾.図1.4.5のように Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉は 温度ごとに異なる円錐構造をとり、磁場による電場応答が変化することが示された.図 1.4.6 に, Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉の磁場による電気分極の変化の様子を示す.彼らは, Ba(Fe₁₋ _xSc_x)₁₂Mg_{0.5}O₁₉が,磁気的・電気的に制御可能なマルチフェロイック材料として有望である と結論づけている.Ba(Fe1-xScx)12O19の磁気および磁気電場特性に関する他の研究としては, Gupta らによる多結晶試料を用いた研究がある. 縦方向の円錐形の磁気構造とスピングラ ス様の相が共存しており,ゼロ磁場でも強誘電性を示すことが分かった ^{21, 22)}.

図 1.4.1 中性子回折実験で観測された Ba(Fe_{1-x}Sc_x)₁₂O₁₉のヘリカル磁性¹⁰⁾

図 1.4.2 メスバウアー分光法による Ba(Fe_{1-x}Sc_x)₁₂O₁₉の Sc サイト選択性の実験¹³⁾

図 1.4.3 マルチフェロイックスの概念図

図 1.4.4 Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉の結晶構造,および磁気構造²¹⁾

図 1.4.5 Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉の低温における磁気構造の変化²¹⁾

図 1.4.6 Ba(Fe_{1-x}Sc_x)₁₂Mg_{0.5}O₁₉の磁場による電気分極の制御²¹⁾

1.5 本研究の課題と位置づけ

これまで、Sc 添加 M 型六方晶フェライトである Ba(Fe1-xScx)12O19は、磁気構造に関する 様々な研究がなされてきた.古くは、中性子回折実験によるヘリカル磁気構造の発見があ り、メスバウワー分光によるサイト選択性の研究などがなされてきた.そして、2000 年代 になり、マルチフェロイックスという新しい物性の発見に至っている.特に Ba(Fe1xScx)12O19は、円錐スピン型と呼ばれる特殊なヘリカル磁性を示し、強磁性体の性質と強誘 電体の性質が強く結合するため、電場による磁性の制御や、または磁場による分極制御を 利用した新しいデバイスへの応用が期待されている.しかしながら、試料の粗悪さや実験 手法の不備などにより、物理条件の変化による磁気構造の変化に関する統一的な研究や、 ヘリカル磁性の詳細な磁気構造や、その発現機構は未解明のままであり、研究の余地が十 分にあると考えられる.これらの課題を解決することは、六方晶フェライトのさらなる発 展や、新しいデバイスへの応用に向け、非常に有意義な研究であるといえる.

本研究では、Flux 法により良質な Ba(Fe_{1-x}Sc_x)₁₂O₁₉ 単結晶の育成に成功した.結晶成長 過程をその場観察するなど、電気炉に改良を加えることで、育成困難であった大型で高濃 度の結晶成長に成功した.一方、3次元的実験手法(TOF-Laue 法)による高精度化や、実 験の自動化・遠隔操作化、デジタル解析(機械学習)など、近年の技術的な発展を背景に、 様々な物理条件下における測定や、精密な結晶磁気構造解析を進めることが可能となった.

1.6 Ba(Fe1-xScx)12O19単結晶試料の育成

フラックスを用いた自発的結晶化法により、一連の Sc 濃度 x を持つ M 型六方晶フェラ イト Ba(Fe1-xScx)12O19の単結晶育成に成功した ²³⁾. フラックス法は、物質の融点よりもは るかに低い温度で高品質な単結晶を比較的短時間で育成できるため、広く採用されている 手法である.物質の融点が高いことによる弊害として、原料物質の蒸気圧が高すぎるため 揮発が激しい、また、原料物質が固化する際に分解や組成の変動が起こる場合や、固化し た後の構造変化が起こりやすいなどが挙げられる. これらを避けるために、目的とする物 質をなるべく低い温度で安定相としてとりだす必要がある. このため、原料を融点よりも 低い温度で融解できる融剤(フラックス)を使い、この溶液からの析出反応を用いる.よ く選ばれるフラックスとしては、低融点で析出後に水、酸、アルカリ等で融解し分離でき るものがある.

本研究の単結晶育成では、フラックスに炭酸ナトリウム(Na₂CO₃)を用いた. Na₂CO₃の 融点と Sc はそれぞれ 1124 K と 1814 K なので、Sc とフラックスの融点差が縮まることで、 より効果的な結晶成長が可能となった. また、図 1.6.1 のように、結晶生成をその場で観察 するなど電気炉に改良を加えた. その結果、大型で良質な Ba(Fe_{1-x}Sc_x)₁₂O₁₉ 単結晶育成に 成功した. 得られた結晶を図 1.6.2 に示す.

図 1.6.1 観察窓からの結晶成長の様子

図 1.6.2 Ba(Fe_{1-x}Sc_x)₁₂O₁₉の単結晶

1.7 X線回折法(XRD)による Ba(Fe1-xScx)12O19の評価

Ba(Fe_{1-x}Sc_x)₁₂O₁₉単結晶,および粉末のXRD測定(Rigaku: MiniFlexII)を行った.入射X 線にはCuK_a線を用いた.Gauss関数を用いた回帰曲線により回折ピーク位置を求め,結晶 の格子定数を決定した.このときのX線波長λは単結晶と粉末において,それぞれ0.15405 nm および0.1541₈ nmである.例として,図1.7.1,および図1.7.2にそれぞれSc濃度x=0.0884の単 結晶のXRDパターンと同じ試料の粉末のXRDパターンを示す.すべての回折ピークに面指 数002nが付与される.単結晶XRDパターンにおける回折ピークの鋭さ,およびK_a1線とK_a2 の分離は,結晶が良質であることを示す.したがって,得られた結晶はBa(Fe_{1-x}Sc_x)₁₂O₁₉の 単一相であることがわかる.さらに,単結晶パターンにおける00<u>28</u>回折ピークから,格子 定数c=2.34338(5) nmと決定された.同じ試料の粉末XRDの220回折ピークから,格子定数 a=0.5926(6) nmと決定された.

図 1.7.1 Sc 濃度 x=0.0884 単結晶の c 面からの XRD(θ-2 θ スキャン)パターン

図 1.7.2 Sc 濃度 x=0.0884 粉末の XRD(θ-2θスキャン)パターン

表1.7.1に、Sc濃度xと求めた格子定数の関係を示す.Sc濃度xを特定するため、EDS測定 (JEOL: JSM-6000PLUS)による、元素分析を実施した.測定する試料はメノー乳鉢を用い て粉末にした.粉末試料をアルミ板にカーボンテープを張り付けたものに少量付着させた. 測定では白金蒸着は行わず、低真空分析を行った.各試料はそれぞれ異なる位置から倍率 は500倍で合計10点のEDSスペクトルを測定し、得られたスペクトルから試料の原子比とSc 濃度xを決定した.図1.7.3.3にSc濃度xと格子定数a, cの関係を示す.この結果から、Sc濃度 が高くなると格子定数a, cが増加することがわかる.Sc濃度が高くなるにつれて格子定数 a, cが大きくなるのは、Sc³⁺半径(0.074 nm)がFe³⁺半径(0.065 nm)よりも大きいためで ある.この結果は、式(1.4)及び(1.5)に示すように、格子定数と組成元素の濃度に比例関係 が成り立つ、合金に関するヴェガード則に一致した.

C. 冲 庄	格子定数	
SC 侲皮 X	<i>a</i> (nm)	<i>c</i> (nm)
0	0.5896(5)	2.31934(5)
0.0163(4)	0.5896(4)	2.32354(1)
0.0261(9)	0.5898(5)	2.32615(4)
0.0418(15)	0.5909(1)	2.33053(5)
0.0576(10)	0.5912(3)	2.33481(1)
0.0735(20)	0.5913(5)	2.34225(4)
0.0884(11)	0.5926(6)	2.34338(5)
0.0689(5)	0.5914(9)	2.34061(1)
0.0978(11)	0.5919(4)	2.34644(6)
0.0704(10)	0.5915(2)	2.34208(2)
0.112(1)	0.5926(5)	2.34723(0)
0.113(1)	0.5926(5)	2.34970(1)
0.137(1)	0.5933(3)	2.35751(6)
0.128(3)	0.5931(3)	2.35570(5)
0.153(4)	0.5940(4)	2.36071(2)
0.184(2)	0.5947(2)	2.36412(6)
0.181(2)	0.5946(3)	2.36532(6)
0.188(2)	0.5949(3)	2.36514(7)
0.192(1)	0.5951(2)	2.36541(7)

表1.7.1 Sc濃度xと格子定数の関係

図1.7.3 Sc濃度xと格子定数a, cの関係

$$c = 2.321(1) + 0.241(8)x (nm)$$
(1.4)

a = 0.589(1) + 0.029(9)x (nm)(1.5)

1.8 特殊環境微小単結晶中性子構造解析装置(SENJU; J-PARC)

SENJUは、日本加速器研究施設(J-PARC)の物質・生命科学実験施設(MLF)の BL18 にある、単結晶 TOF ラウエ中性子回折装置である^{24,25)}.極低温や高圧、高磁場などの複合 環境下で、格子長 50Å以下程度の低分子化合物の精密な構造解析を目的とする.使用され る中性子ビームは、水銀ターゲットに陽子ビームを照射させ、衝突によって得られるター ゲット水銀中の中性子を取り出して利用する(核破砕).MLFでは陽子を1秒間に25回の 間隔で水銀ターゲットに入射しているため25 Hzのパルス状の白色中性子が得られる.表 1.8.1 に SENJUの主な仕様を示す.

高エネルギーの陽子ビームをターゲット物質に照射すると、核破砕反応によって、中性 子を主として、陽子、中間子等の二次粒子が発生する.ここで得られる中性子は、エネル ギーの高い速中性子だが、物質科学や生命科学にはエネルギーが低く、遅い中性子を利用 する必要がある.このため,軽水や液体水素を材料とする減速体(モデレータという)を ターゲットの近傍に置くことで,ターゲットで発生した速中性子を減速させこれを利用す る.モデレータから得られる中性子ビームの強度を増やすには,その周囲に反射体を置く. 例えば,反射体によって液体水素モデレータからの中性子は 10 倍以上にも大きくするこ とができる.これは、反射体の中で中性子が減速・熱化し、モデレータに流入するためで ある、しかしながら、この減速・熱化に時間を要するために、モデレータから出る中性子 は、パルス幅が拡がるとともに、その減衰部には長いテイルを引くという特性を示すこと になる.一方,物質の構造などを分解能よく高精度で調べる場合には,強度をある程度犠 性にしてでも,幅の狭い,よりきれいなパルス波形をもった中性子ビームを必要とする. このためには,反射体とモデレータの間を,適当な遮断エネルギーを持ったカドミウム(Cd) や炭化ホウ素(B₄C)などの中性子吸収板で仕切ると、反射体の中を遠回りして、エネルギ ーが低下した中性子がモデレータに流入することを阻止できる.この中性子吸収板のこと をデカップラー(decoupler)と呼び、これと組み合わせたモデレータのことを非結合型モ デレータと呼ぶ. SENJU は非結合型モデレータである.

モデレータ種類	非結合ポイズン型モデレータ
古姓之述巨	0.04 ~ 0.44 nm (1st frame)
中任于波安	0.46 ~ 0.88 nm (2nd frame)
	$0.6 \times 10^6 \text{ n/s/mm}^2$ (standard mode)
	$1.3 \times 10^6 \text{ n/s/mm}^2$ (high-intensity mode)
試料位置	L1=34.8 m, L2=0.8m
最大格子長	5 nm
試料サイズ	$> 0.5 \times 0.5 \times 0.5 \text{ mm}^3$
検出器範囲	$-13^{\circ} \sim -167^{\circ}, +58^{\circ} \sim +167^{\circ}$

表 1.8.1 SENJU の仕様

SENJUのビームラインレイアウトの概略図を図 1.8.1 に示す. SENJUのビームラインは、 モデレーターを通過後の中性子から、最小で波長 $\lambda = 0.04$ nm の中性子が入射できるように 設計されている.中性子を発散させないように楕円形のストレートスーパーミラーガイド が減速材から 15.2 m から 31.8 m までを覆っている.ビームの発散とサイズを制御するた めに中性子ガイドの後続に炭化ホウ素 (B₄C) スリットが 2 つ付いている.帯域幅チョッ パー (BWC) によって、1st frame の中性子 (波長 λ が 0.04 nm~0.44 nm)を抽出する.同 じように 2nd frame の中性子 (波長 λ が 0.46 nm~0.88 nm) については、2 つの BWC で抽 出する.また、TOF 法を用いるため中性子発生時刻を決定する必要があるので T_0 チョッパ ーも設置されている.

 $L_1 = 34.8 \text{ m}$

図 1.8.1 ビームラインレイアウトの概略図

図 1.8.2 に SENJU の外観図を,図 1.8.3 に SENJU の検出器の配置の概略図を示す. (a)は 試料と検出器を水平方向から見た図で,回折計は試料を囲むように 12 の検出器モジュー ルで構成されている (南側に 5 つ,北側に 7 つ). モジュールは試料から 800 mm の位置に 22.5°の間隔で配置されている.(b)は各モジュールを垂直方向から見た図で、3 つの検出器が 22.18°の間隔で配置されている.SENJUの検出器にはシンチレータ検出器が使われ ており、1 つの検出器について 256 mm ×256 mm の高感度領域がある.このように 36 個 の検出器が試料の周囲に円筒状に配置されている.加えて死角を最小限にするために検出器の下にも1 つの検出器を配置している.

図 1.8.3 検出器の配置の概略図

図 1.8.4 に室温測定用 2 軸ゴニオメーターを示す. SENJU は TOF ラウエ法に基づいてい るため、1 つの結晶方位で大きな逆格子空間をスキャンできるが、結晶学的に独立した逆 格子空間全体をスキャンするには実験中に試料の方向を数回変更する必要がある. 低対称 の結晶では最低でも 2 軸の回転軸が必要となるため、SENJU では ω 軸と φ 軸の 2 軸ゴニ オメーターが使われている. また、回転軸はピエゾ回転モータによって動作する. 低温測 定の場合は 4 K 冷凍機と 2 軸ゴニオメーターが接続される.

図 1.8.4 室温測定用 2 軸ゴニオメーター

SENJUの最大格子長は 5 nm であり、本研究で使用している試料 Ba(Fe_{1-x}Sc_x)₁₂O₁₉は 2.4 nm 程度であるため解析の条件を十分満たしている.

図 1.8.5 に SENJU で観測された 296 K における Sc 濃度 x=0 単結晶の中性子ラウエ写真 を示す. このように 37 個の検出器上で, 複数の回折スポットが観測される. 図 1.8.6 に図 1.8.5 の 35 番検出器で観測された, 001 方向の TOF 中性子回折パターンを示す. 横軸はミ ラー指数 *l*, 縦軸は中性子カウント数である. 002*n* に指数付けされた, 核散乱ピークと磁 気散乱ピークの混成ピークが観測され, x=0 結晶は 296 K でフェリ磁性であることを示し ている.

図 1.8.5 296 K における Sc 濃度 x=0 単結晶の中性子ラウエ写真.

図 1.8.6 296 K における Sc 濃度 x=0 単結晶の 001 方向の TOF 中性子回折パターン.

1.9 本研究の目的

本研究の主な目的は、大型で高濃度の M 型六方晶フェライトの単結晶 Ba(Fe₁₋xSc_x)₁₂O₁₉ について、様々な物理条件下でマクロな磁化測定や、中性子回折実験行い、 ①磁気相図の完成②磁気の周期構造の特定、および③アンチフェロ磁気相における磁 気構造解析を行うことである. なお、③は、ヘリカル磁性相の延長で発現すると考え られる、比較的構造が単純である Commensurate なアンチフェロ磁気構造の解析を実 施した. そして、マルチフェロイックス材料など、新しい動作原理に基づくデジタル メモリ素子や、低電力消費となる電子デバイス等の研究・開発に貢献することである.

本研究室では,良質な高濃度の Ba(Fe_{1-x}Sc_x)₁₂O₁₉単結晶試料を使用し,磁化測定実験 や中性子回折実験を行った.磁化測定には,振動試料型磁力計 VSM と超電導量子干渉 計 SQUID を用いることで,極低温~900℃までの温度範囲における,高精度な磁気特 性評価を行った.また,中性子回折実験は,日本加速器研究施設(J-PARC)の物質・ 生命科学実験施設(MLF)の BL18 にある単結晶 TOF ラウエ回折装置 SENJU^{24,25)}を使 用し,低温から室温環境下における,多方位の Bragg 反射を収集し,様々な Sc 濃度, 温度下における,Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気特性の解析を行った.

本論文は全5章で構成される.第1章の序論では、研究背景、先行研究について述 べる. 第2章では, 磁化測定と中性子回折測定による磁気相転移点の決定と磁気相図 について報告する.Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁化の温度変化を測定し、磁化が極大となる温 度、およびゼロとなる温度を特定した.また、Time-of-flight (TOF)-ラウエ単結晶中 性子回折を測定し,磁気相転移温度を正確に求めた.これらの結果をもとに作成され た, Sc 濃度 x と温度 T からなる, Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気相図について報告する. 第3 章では、Ba(Fe1-xScx)12O19のヘリカル回転角について報告する.ヘリカル磁性相で発現 する,結晶学的に等価な原子サイトにおけるヘリカル回転角 ��の, Sc 濃度 x と温度 T 依存性について議論する. 第4章では、アンチフェロ構造に着目した磁気構造解析に ついて報告する. 中性子回折実験で観測される多方位のブラッグ反射を使用して, Ba(Fe1-xScx)12O19の結晶・磁気モデルを決定する.具体的には、原子核からの核散乱を 使用して結晶構造を,磁気衛星散乱を使用してアンチフェロ磁気相で発現するスピン キャント磁気構造における,磁気モーメントの大きさと向きをそれぞれ決定する.な お,解析には単結晶回折データ処理ソフトウェアの STARGazer,および結晶磁気構造 解析には JANA2006 を使用した. 最後に第5章で本研究を総括し, 今後の検討課題及び 展望を述べる.

1.10 予想される成果

本研究で予想される成果について述べる.図 1.10 に本研究による予想される成果の概略 図を示す. Ba(Fe_{1-x}Sc_x)₁₂O₁₉系の磁気構造に関する研究は,1960年代にヘリカル磁性の発 見があり 2000年代からマルチフェロイックスという新しい物性の発見に至っている.そ して,デバイスへの応用,六方晶フェライトのさらなる発展が望まれている.

これに対して本研究では、別の角度からのアプローチを試みる.即ち、①良質な単結晶 育成、②磁気特性の詳細な解析による磁気相図や磁気の周期構造の特定を行う.③アンチ フェロ磁性やヘリカル磁性の磁気構造を明らかにする.④そして磁性の発現機構を解明す る.現在、本研究は既に①良質な単結晶育成に成功している.これらのアプローチで、デ バイスへの応用、六方晶フェライトのさらなる発展に貢献する.

図 1.10 本研究の位置づけと予想される成果

参考文献

- 1) 平尾貞太,奥谷克伸,尾島輝彦,"フェライト",丸善株式会社(1986), pp1-4, p12, p17.
- 2) 岡本祥一,近桂一郎"マグネトセラミックス",技報堂出版株式会社(1985), p125.-137.
- 3) 本間基文, 日口章, "磁性材料読本", 株式会社工業調査会 (1998), p174.
- 4) J. Smit, H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven, (1959).
- 5) P. B. Braun, The crystal structures of a new group of ferromagnetic compounds, Philips Res. Rep. (1957) 491-548.
- 6) E. W. Gorter, Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures, Proc. IEE. 104 (1957) 255-260, <u>https://dx.doi.org/10.1049/pi-b-1.1957.0042</u>..
- T. M. Perekalina, V. P. Cheparin, Ferrimagnetism of hexagonal ferrites, Sov. Phys. Solid State 9 (1968) 2524-2526.
- Aleshko-Ozhevskiĭ, R. A. Sizov, I. I. Yamzin, V. A. Lyubimtsev, Helicoidal antiphase spin ordering in hexagonal ferrites of the Ba(Fe_{1-x}Sc_x)₁₂O₁₉ system, Sov. Phys. JETP 28 (1968) 425-430.
- 9) A. D. Shchurova, T. M. Perekalina, S. S. Fonton, Dependence of magnetocrystalline anisotropy on field intensity in hexagonal barium ferrite, Sov. Phys. JETP 31 (1970) 840-841.
- Aleshko-Ozhevskiĭ, I. I. Yamzin, The anomalous intensity distribution in satellites in neutron diffraction investigations of block helicoidal structures, Sov. Phys. JETP 29 (1969) 655-657.
- 11) G. Albanese, A. Deriu, E. Lucchini, G. Slokar, Mössbauer investigation of In and Sc substituted barium hexaferrite, Appl. Phys. A26 (1981) 45-50, https://link.springer.com/article/10.1007/BF01197677.
- 12) V. V. Korovushkin, M. N. Shipko, V. G. Kostishin, I. M. Isaev, A. Yu. Mironovich, S. V. Trukhanov, A. V. Trukhanov, Structural and magnetic properties of a Ba(Fe_{1-x}Sc_x)₁₂O₁₉ substituted hexagonal ferrite, Inorg. Mater. 55 (2019) 1007-1013, <u>https://dx.doi.org/10.1134/S0020168519100066</u>.
- A. S. Kamzin, V. L. Rozenbaum, L. P. Ol'khovik, Mössbauer studies of the surface and bulk magnetic structure of scandium-substituted Ba-M -type hexaferrites, Phys. Solid State 41 (1999) 433- 439, <u>https://dx.doi.org/10.1134/1.1130797</u>.
- 14) T. Kimura, G. Lawes, P. Ramirez, Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures, Phys. Rev. Lett. 94(2005)137201-1-137201-4, https://dx.doi.org/10.1103/PhysRevLett.94.137201.
- 15) S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Lowmagnetic-field control of electric polarization vector in a helimagnet, Science 319 (2008) 1643-1646, https://dx.doi.org/10.1126/science.1154507.
- 16) H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. Yano, Y. Kousaka, J. Akimitsu,

M. Matsuura, K. Hirota, Two distinct ferroelectric phases in the multiferroic Y -type hexaferrite Ba₂Mg₂Fe₁₂O₂₂, Phys. Rev. B 80 (2009) 180419-1-180419-4, https://dx.doi.org/10.1103/PhysRevB.80.180419.

- 17) S. Ishiwata, D. Okuyama, K. Kakurai, M. Nishi, Y. Taguchi, Y. Tokura, Neutron diffraction studies on the multiferroic conical magnet Ba₂Mg₂Fe₁₂O₂₂, Phys. Rev. B 81 (2010) 174418-1-174418-8, <u>https://dx.doi.org/10.1103/PhysRevB.81.174418</u>.
- 18) S. Hirose, K. Haruki, A. Ando, T. Kimura, Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type BaSr(Co₂₋ _xZn_x)Fe₁₁AlO₂₂ ceramics, Appl. Phys. Lett. 104 (2014) 022907-1-022907-4, <u>https://dx.doi.org/10.1063/1.4862432</u>.
- 19) V. Kocsis, T. Nakajima, M. Matsuda, A. Kikkawa, Y. Kaneko, J. Takashima, K. Kakurai, T. Arima, F. Kagawa, Y. Tokunaga, Y. Tokura, Y. Taguchi, Magnetization-polarization cross-control near room temperature in hexaferrite single crystals, Nat. Commun. 10 (2019) 1247-1252, <u>https://dx.doi.org/10.1038/s41467-019-09205-x</u>.
- 20) Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura, Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105 (2010) 257201-1-257201-4, https://dx.doi.org/10.1103/PhysRevLett.105.257201.
- S. Gupta, S. K. Upadhyay, V. Siruguri, V. G. Sathe, E. V. Sampathkumaran, Observation of magnetoelastic and magnetoelectric coupling in Sc doped BaFe₁₂O₁₉ due to spin-glass-like phase, J. Phys.: Condens. Matter 31 (2019) 295701, https://dx.doi.org/10.1088/1361-648X/ab1798.
- S. Gupta, S. K. Deshpande, V.G. Sathe, V. Siruguri, Effect of scandium substitution on magnetic and transport properties of the M -type barium hexaferrites. J. Alloys Compd. 815 (2020) 152467, <u>https://dx.doi.org/10.1016/j.jallcom.2019.152467</u>
- 23) S. Utsumi, S. Tanaka, K. Maruyama, N. Hatakeyama, K. Itoh, J. Koike, A. Horikawa, H. Iriyama, H. Kanamaru, Y. Amako, T. Iiyama, R. Futamura, R. Kiyanagi, A. Nakao, K. Moriyama, Y. Ishikawa, N. Momozawa, Flux growth and magnetic properties of helimagnetic hexagonal ferrite Ba(Fe_{1-x}Sc_x)₁₂O₁₉ single crystals, ACS Omega 38 (2020) 24890–24897, <u>https://pubs.acs.org/doi/abs/10.1021/acsomega.0c03671</u>
- 24) T. Ohhara, R. Kiyanagi, K. Oikawa, K. Kaneko, T. Kawasaki, I. Tamura, A. Nakao, T. Hanashima, K. Munakata, T. Moyoshi, T. Kuroda, H. Kimura, T. Sakakura, C.-H. Lee, M. Takahashi, K. Ohshima, T. Kiyotani, Y. Noda, M. Arai, SENJU: a new time-of-flight single-crystal neutron diffractometer at J-PARC, J. Appl. Cryst. 49 (2016) 120-127, https://dx.doi.org/10.1107/S1600576715022943

25) T. Ohhara, "Recent Advance of the Neutron Crystal Chemistry by using High Intensity Neutron Beam at J-PARC", J. Cryst. Soc. Jpn., 56, 5, (2014), pp.301-306.

第2章 M型六方晶フェライト Ba(Fe1-xScx)12O19の磁気相図

2.1 緒言

これまでのマルチフェロイック材料の研究で、ヘリカル磁性を示す六方晶フェライト系 で画期的な成果が得られたている¹⁻⁷⁾. 巨視的な電気分極を発生させるには、円錐形のスピ ン構造が重要であることが明らかになった.徳永らは,磁化測定と中性子回折測定により、 Ba(Fe1-xScx)12Mg0.5O19 が室温まで縦型の円錐スピン状態であることを示し、横方向の磁場 が電気分極を誘起することを示した⁷⁾.彼らは、Ba(Fe1-xScx)12Mg0.5O19 が、磁気的・電気的 に制御可能なマルチフェロイック材料として有望であると結論づけている. Ba(Fe1xScx)12O19 の磁気および磁気電場特性に関する他の研究としては、Gupta らによる多結晶試 料を用いた研究がある.縦方向の円錐形の磁気構造とスピングラス様の相が共存しており、 ゼロ磁場でも強誘電性を示すことが分かった^{8.9)}. このように、これまでの様々な研究によ り、M型六方晶フェライト Ba(Fe1-xScx)12O19 については、室温において円錐スピン構造の ヘリカル磁性が発現することが報告されてはいる. しかし、様々な物理条件下における磁 性の変化に関しては、さらなる研究が望まれている.ヘリカル磁性の発現する物理条件や、 ヘリカル磁気構造の詳細、Fe サイト毎の磁気モーメント詳細など未解明である.特に、へ リカル磁性が発現する温度領域やSc 濃度について、統一的な研究はなされていない.

そこで、本研究室で得られた大型で良質な M 型六方晶フェライトの単結晶 Ba(Fe_{1-x}Sc_x)₁₂O₁₉について、様々な Sc 濃度、及び温度下におけるマクロな磁化測定を行い、中性 子回折実験によって磁気相転移温度を正確に決定し、*x-T*磁気相図を完成させる.

本章で行われた Ba(Fe_{1-x}Sc_x)₁₂O₁₉の実験概要について説明する.まず①振動試料型磁力 計(VSM)による磁化曲線から、ヘリカル磁性の発現を確認する.次に②VSM による磁化の 温度変化から、常磁性転移温度を決定する.③SQUID による磁化の温度変化測定から、磁 気相転移温度を決定する.④中性子単結晶回折装置 SENJU を使用した TOF-Laue 中性子回 折の温度変化測定からヘリカルーフェリおよびヘリカルーアンチフェロ磁気相転移温度を 正確に決定する.以上のアプローチで、x-T磁気相図を完成させる.

2.2 磁化測定

磁化測定は、磁性体の特性評価のうえで最も重要な測定の一つである.用いられる磁力 計は、磁性体に働く力を測定するタイプと、電磁誘導を利用して誘導起電力を測定するタ イプに大別される.よく使われる磁力計は、振動試料型磁力計(VSM)と超電導量子干渉 計(SQUID)である.

2.2.1 振動試料型磁力計(VSM)

図2.2.1.1に振動試料型磁力計の装置を示す^{10,11)}.均一磁場中に置いた試料を一定の周波数で振動させ、試料近辺に配置した検出コイルに誘起される起電力を、ロックインアンプを用いて検出する方法である.測定試料を振動させることから振動試料型磁力計(Vibrating Sample Magnetometer,略してVSM)と呼ばれる¹²⁾.VSMによる磁化測定は相対測定しかできないが、標準試料を用いて測定器固有の定数を決定しておき、自動処理する.なお、標準試料には磁気異方性の小さいNiがよく用いられる¹³⁾.以下に特徴を示す¹⁴⁾.

(1) 均一磁場中で磁化を測定できるので、強い磁場を印加することができる.

(2) 磁場がゼロでも磁化測定が可能であるから、残留磁化の測定ができる.

(3) 感度が高く、磁化の測定範囲が広い.

(4) 広範囲な温度領域(数K-1000 Kくらい)に渡り磁化の温度変化を容易に測定できる.

(5) 一般に測定時間が短い.

図2.2.1.1 振動試料型磁力計の装置^{10,11)}.

2.2.2 SQUID 磁束計

SQUID とは、Superconducting Quantum Interference Device(超電導量子干渉素子)の略称で、極めて高い感度を持つ超伝導磁気センサーである.地磁気の1億~10億分の1程度の極めて小さな磁束密度を計測できる.SQUIDは、超伝導応用技術の中で最も広く使用されている¹⁵⁾.図 2.2.2.1 に、SQUID 磁束計の概略図を示す.

図 2.2.2.1 SQUID 磁束計の概略図¹⁶⁾.

SQUID は,高周波電源(100 MHz 程度)で駆動し,ジョセフソン接合を1つだけ含むリ ングを用いる rf-SQUID と,直流電流源で駆動し,ジョセフソン接合を2つ含むリングを 用いる dc-SQUID の二つのタイプがある^{14,17)}. 一般に rf-SQUID は外乱に強いが感度は低 く,逆に dc-SQUID は,感度は高いが外来雑音に弱い.通常, rf-SQUID を用いる.本実験 では, dc-SQUID を用いた.

2.2.3 ヘリカル磁性材料の磁化曲線

ヘリカル磁性材料の磁化曲線には,固有の特徴がみられる.ここでは過去行われた Y型 六方晶フェライト(Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂の磁化測定結果を参考に述べる¹⁸).

図 2.2.2.1 に T=77 K における Y 型六方晶フェライト(Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂の磁化曲線を示 す. このように,磁場 H_{c1} , H_{c2} , …, H_{c5} および H_f で,6個の屈曲点を示す(H_f は磁化 が飽和する磁場).これら臨界磁場における磁気モデルについて,図 2.2.2.2 および表 2.2.2.1 に示す.それぞれ,(a)ヘリカル微変形相,(b)ファンーI相,(c)ファンーII,Ⅲ相,(d)飽和 相の磁気相モデルである.このように屈曲点は,磁気モーメントが,ヘリカル微変形相か ら,磁場 H方向の飽和相に向けて,段階的に変化するため観測されると考えられる.

図 2.2.3.1 T=77 K における(Ba1-xSrx)2Zn2Fe12O22 単結晶試料 Sr 濃度 x=0.748 の磁化曲線.

図 2.2.3.2 (a)ヘリカル微変形相, (b)ファン-I相, (c)ファン-Ⅱ, Ⅲ相, (d)飽和相の磁気相モデル. (矢印は磁気モーメントであり, c軸に平行)

表 2.2.3.1 磁気相モデル.

$0 < H < H_{C1}$	ヘリカル微変形相
$H_{\rm C2} < H < H_{\rm C3}$	ファンー I 相
$H_{\rm C4} < H < H_{\rm C5}$	ファンー II 相
$H_{\rm C5} < H < H_{\rm f}$	ファンーⅢ相
$H_{\rm f} < H$	飽和相
2.3 Ba(Fe1-xScx)12O19の磁化測定

2.3.1 Ba(Fe1-xScx)12O19の磁化曲線

図 2.3.1.1 は, 296 K で, (a)c 面方向に, および(b)c 軸方向に磁場を印加した場合の, x=0, 0,128, 0.153, 0.189 結晶の磁化曲線である. x=0 結晶は, 強い磁気異方性を示している. c 軸方向の σが反磁場程度で飽和していること, c 面方向の σが 296 K において 18 kOe で飽和していることから明らかである. 一方, その他の Sc 濃度結晶に着目すると, c 軸方向と c 面方向の磁化過程はほぼ一致し, x=0 結晶のみ強い磁気異方性を示す結果となった.

(a) c 面方向に磁場を印加

(b) c 軸方向に磁場を印加

図 2.3.1.1 296 K における Ba(Fe_{1-x}Sc_x)₁₂O₁₉の(a) c 面方向および(b) c 軸方向に磁場を印加 した時の磁化曲線. 図 2.3.1.2 は、77 K で、(a) c 面方向に、および(b) c 軸方向に磁場を印加した場合の、x=0, 0.128, 0.153, 0.189 結晶の磁化曲線である.x=0 結晶は、296 K と同様に強い磁気異方性を示している.c 軸方向の σ が反磁場程度で飽和していること、c 面方向の σ が測定範囲外で飽和することから明らかである.-方、その他の Sc 濃度結晶に着目すると、296 K と同様に c 軸方向とc 面方向の磁化過程はほぼ一致したが、Sc を多く含む結晶で異常な磁化過程が見られ、比較的低い磁場領域で緩やかな σ の増加と鋭い屈曲点が観察された.具体的には、x=0.128 結晶で 1.7 kOe に、x=0.153 結晶で 0.70 kOe に屈曲点が観測された.-方、x=0.189 の Sc 高濃度結晶では屈曲点は見られず、緩やかな σ の増加が見られた.このような低磁場での緩やかな σ の増加と鋭い屈曲点は、ヘリカル磁性に特徴的なものであり¹⁸⁾、77 K の Ba(Fe_{1-x}Sc_x)₁₂O₁₉ では、Sc 高濃度結晶でヘリカル磁性が発現することが示唆された.

図 2.3.1.2 77 K における Ba(Fe_{1-x}Sc_x)₁₂O₁₉の(a) c 面方向および(b) c 軸方向に磁場を印加した時の磁化曲線.

2.3.2 Ba(Fe1-xScx)12O19の磁化の温度変化

図 2.3.2.1 は、5 kOe の外部磁場をかけた $T=2\sim 880$ K の代表的な単結晶の σ の温度変化を示したものである.磁性である Fe^{3+} イオンが非磁性である Sc^{3+} イオンに置き換わるため、同温度における σ は x の増加とともに減少する傾向である.しかし、x=0.0418 の結晶の低温領域での σ は x=0 の結晶よりも大きく、このことはイオン分布の観点から議論されている. $x \leq 0.0418$ の単結晶の σ の温度依存性は、約 50 K まではほぼ一定で、その後は直線的に減少し、キュリー点でゼロになるというフェリ磁性を示す.一方、0.0735 \leq x \leq 0.128 の単結晶における σ の値は、明確な極大値を示しており、これはヘリカル磁性からフェリ磁性への磁気相転移温度に対応している. x=0.0735 結晶では、57 K で、x=0.0968 結晶では、121 K で、x=0.128 結晶では、213 K で極大値を示した.これらの温度以上では、 σ は直線的に減少し、キュリー点でゼロになる.Sc 濃度 x が大きい結晶(x \geq 0.153)では、温度変化による σ の減少が大きくなり、極大点が不明瞭となる.さらに温度を上げていくと σ はでしては、後の項で詳しく述べる.これら常磁性が発現する温度は、x が増加するにつれ減少する.

図 2.3.2.1 (a) SQUID と(b) VSM で測定した代表的な単結晶の磁化 の温度変化を示す.5 kOe の外部磁場 Hを c 軸方向に平行に印加した.

図 2.3.2.2 に磁化測定の結果から作成した磁気相図を示す. 横軸を Sc 濃度 x, 縦軸を温度とする. σが極大となる温度は Sc 濃度とともに増加した. 直線の左側がフェリ磁性相となる. 常磁性へ転移する温度は, 濃度 x の増加に伴い減少した. 直線の右側が常磁性相となる. 次項より, 中性子回折実験により詳細な調査を行う.

図 2.3.2.2 磁化測定の結果から作成した磁気相図

2.4 中性子回折法 19)

中性子回折法とは,結晶による中性子線の回折現象を利用して,物質の結晶構造や磁気 構造を調べる手法である.中性子は,原子核に含まれる粒子であるが,それらは原子核中 で束縛されている.中性子回折法に必要な自由中性子は,寿命が短いため通常は自然界に 存在せず,ウランの核分裂反応から得ることができるが,加速した陽子をターゲットとな る物質の原子核に衝突させ,そこからでてくる中性子を集めることでも利用することがで きる.

中性子の現象のひとつとして回折が知られている.中性子線のエネルギーを適切に抽出 し、その波長を結晶の原子核間距離と同程度とすることで、結晶構造解析に用いることが できる.物質に入射した中性子線は、X線と同様にブラッグの回折条件

$2d\sin\theta = n\lambda$ (2.1) (d:格子定数, θ :中性子線入射角, n:整数, λ :中性子波長)

を満たして回折する.図 2.4.1 に示すように、中性子は、電荷を持たない素粒子である.そ のため X線が電子によって散乱されるのに対して、中性子は物質中のイオンや電子に影響 されず、原子核によって散乱される(核散乱).これにより、低エネルギーの X線の有効 侵入深さが数µm 程度から 1 mm 未満であるのに対して、中性子回折に用いられる熱中性子 の有効な侵入深さは、一般に数 mm から数十 mm と大きくなる場合が多く、物質内部の結 晶配列や磁気構造の情報が得られる.特に中性子回折は低分子量の分子でも解析が可能で ある.また、中性子は X線と異なり、原子核と相互作用するため、回折強度は同位体間で も異なる.このことから、中性子回折法では例えば H(水素)と D(重水素)を区別する こともできる.また、図 2.4.2 に示すように、中性子は-1.913 MNの核磁気モーメントを持 っているため、物質中の磁気モーメントと相互作用を行い散乱される.中性子回折法は、 これらの特性を利用して磁性体の磁気構造や磁気モーメントの決定などを行うために用い る手法である.観測される中性子線の散乱強度は、入射中性子線の強度、対象となる結晶 の大きさ、及び以降で説明する、結晶・磁気構造因子の大きさに比例する.構造解析では、 結晶・磁気構造因子の実験値、および計算値を比較することにより、対象となる結晶の結 晶構造、および磁気構造を決定する.

図 2.4.1 原子核からの回折

図 2.4.2 磁気モーメントの相互作用による回折

2.4.1 散乱長 19)

試料に入射した中性子は、試料を構成する原子の原子核と相互作用して散乱する.この 原子核による中性子の散乱の程度を表現する量が、中性子散乱長と呼ばれるものである. これは原子核の核種に固有な量であり、X線の原子形状因子に相当する.しかし、中性子 と原子核との散乱過程によるため、中性子散乱長はX線形状因子とは異なる.熱中性子が 原子核で受ける散乱には、ポテンシャル散乱と共鳴散乱の両方ある.ポテンシャル散乱は、 散乱体(散乱ポテンシャル)によって中性子が弾性散乱を受ける時の散乱で、原子核の大 きさにほぼ比例する.共鳴散乱は、中性子が原子核にとり込まれ、複合核をつくり、再び 中性子を放出することによる散乱である.よって、散乱長は、散乱過程において、散乱体 と中性子がどのような複合核を形成するかに大きく依存することとなる.中性子散乱長は 両散乱過程を含んでいる.核力が中性子に対して斥力として働くのか、引力として働くの かで散乱長の正負が決定される.散乱長は、以下のような特徴がみられる.

- 1. 中性子の波長と比較して原子核の大きさは点とみなせるので、中性子散乱長は散乱角 に依らない量となる.
- 2. 水素,重水素の散乱長が炭素や酸素と較べて同程度であるので,水素の位置の情報が 得られる.
- 3. 水素の散乱長が負の値となっているため、水素を重水素で置換した時の散乱効果は著 しく変化する.
- 4. V(バナジウム)の散乱長は-0.38 fm と小さいため、中性子回折強度がほとんど観測されない. このため、中性子回折実験に用いる試料の容器に使用される.

2.4.2 結晶構造因子 19-21)

結晶構造因子 F は, 原子散乱因子 f, 温度因子 T, ミラー指数 hkl と原子の座標(xn, yn, zn)の情報を含む因子である.

$$F_{hkl} = \sum_{n=1}^{N} f_n T_n \exp\left(2\pi i \left(\frac{hx_n}{a} + \frac{ky_n}{b} + \frac{lz_n}{c}\right)\right)$$
(2.2)

ここで、Nは結晶試料中の原子数, a, b, cは単位格子の並進周期は原子座標である.
 原子散乱因子 f とは、原子(電子)が中性子線を散乱させる能力で、原子番号が大きくなるほど散乱能も大きくなる.実際に原子散乱因子の計算は、以下の多項式により近似した
 関数を使用する. a₁, b₁, a₂, b₂, a₃, b₃, a₄, b₄, C の値は、International Tables for Crystallography
 Cにすべての元素毎に記載されている.

$$f\left(\frac{\sin\theta}{\lambda}\right) = \sum_{i=1}^{4} a_i \exp\left(-\frac{b_i \sin^2\theta}{\lambda^2}\right) + C$$
(2.3)

各元素の散乱能をみると、原子番号が大きいほど、散乱能が強く、sinθ/λが大きくなるに 従い散乱能が低下していることが分かる.回折パターンにおいて、低角度領域で回折強度 が強く、高角度ほど弱くなる原因はこのためである.

図 2.4.4.1 原子散乱因子の回折角度依存性 45)

一方,原子が規則正しく配列している結晶においても,熱振動により平均位置を中心と して変位しており,室温では数%程度,絶対零度においても完全に停止はしない.この熱 振動の効果によって,一つの原子による散乱振幅は減衰する.強度計算において,この熱 振動に伴う効果を考慮したものが,温度因子(デバイ・ワラー因子)で,下式のように原 子散乱因子 fと組み合わせて補正を行う.

$$\langle f \rangle = f_0 T = f_0 \exp\{-B\left(\frac{\sin\theta}{\lambda}\right)\}$$
 (2.4)

(2.4)式中のBは、等方性原子変位パラメータと呼ばれており、熱振動を球体として考えるモデルであり、回転楕円体として考える非等方性原子変位パラメータもある.

2.4.3 磁気構造因子 19)

中性子は核スピンの単位で *s*=1/2 の磁気モーメントがあり, 試料の核スピンや軌道電子の磁気モーメントと相互作用する. この相互作用による散乱を磁気散乱という. 非偏極中 性子では核散乱による回折強度と磁気散乱による回折強度を別々に扱うことができる.

$$I_{hkl} = I_{hkl}^{nuclear} + I_{hk}^{magnetic}$$
(2.5)

核散乱による強度 $I_{hkl}^{nuclear}$ は、試料結晶中の原子の散乱長から算出される.磁気散乱による強度 $I_{hkl}^{magnetic}$ は、磁気形状因子から求めることができる.磁気形状因子は磁性を持った原子だけにある因子であり、磁気構造因子は次の式で求めることができる.

$$F^{mag}(hkl) = C_{mag} \sum_{j=1}^{N} f_j^{mag}(hkl) |\mathbf{S}_j| \sin \alpha_j \exp(-i\mathbf{s_{hkl}} \cdot \mathbf{r}_j)$$
(2.6)

ここで C_{mag} は定数 5.3902fm, S_j は j 番目の磁性原子の磁気モーメント(単位は) μ_B (ボーア)である.角度 α_j は hkl 面法線 Q と原子 j の磁気モーメント S_j のなす角である.

図 2.5.2.2 磁気モーメント Sと散乱面のベクトル Qの幾何学的な関係

磁気形状因子 f_j^{mag}(hkl)は磁性を有する電子の分布関数のフーリエ変換であり, X 線にお ける原子散乱因子と似た波数依存性を示す.磁性を有する電子は最外殻軌道の電子なので, 内核電子よりも広く分布しそのため強い波数依存性を示す.中性子回折に対する磁気散乱 の寄与は大きく,磁気モーメントの大きい系では核散乱強度を超えることもある.

2.4.4 核散乱と磁気散乱^{22,23)}

中性子は原子核との核力相互作用と電子の磁気モーメントとの磁気相互作用によって散 乱される.ここで,核散乱は入射方向によらずどの方向にも平等に散乱されるのに対して, 磁気散乱は電子の磁気モーメントによって変化するので磁性の変化によって得られるピー クの位置が大きく変化する.中性子回折測定によって得られる磁気散乱のパターンのモデ ル図として図 2.7.3 を示す.図中のNが核散乱によるピークで,Mが磁気散乱によるピー クである.ピークが現れる位置は中性子の散乱ベクトル Q と逆格子ベクトル tk磁気モー メントの配列を表す波数ベクトル Kを用いて,Q= τ +Kと表せる.これはQ= τ のとき核 散乱ピークが現れ,Q= τ +Kのとき磁気散乱ピークが現れることを示している.(a)強磁性 では磁気モーメントが一方向を向いているため,K=0となり,核散乱と磁気散乱のピーク は重なるが,(b)反強磁性成分を持つ磁性,(c)へリカル磁性では磁気モーメントが一方向を 向いていないため,K ≠ 0となり核散乱とは異なった位置に磁気散乱ピークが現れる.(c) ヘリカル磁性の反射は,核散乱のピークの両側に磁気散乱のピークが現れることから特に 磁気衛星反射と呼ばれる.

図 2.5.2.1 磁気散乱パターンのモデル図 23)

2.5 Ba(Fe1-xScx)12O19の中性子回折の温度測定

Ba(Fe_{1-x}Sc_x)₁₂O₁₉は, *c* 軸方向に磁気の周期構造を持つことが知られている.中性子回折 におけるヘリカル磁性を特徴づける値 δ が結晶の*c* 軸方向を向くため、00*l*方向の中性子回 折パターンの磁気散乱ピークを観察することで、その磁性を正確に知ることができる.つ まり、同様の六方晶フェライトに関する過去の研究から²⁴⁻²⁹、核散乱ピークである 00 2*n* ピークのみが観測される場合はフェリ磁性、00 2(*n*+ δ)の非整合な磁気衛星ピークが観測さ れる場合はヘリカル磁性、00 2(*n*+0.5)の非整合な磁気衛星ピークが観測される場合はアン チフェロ磁性となる.ここで*n*は整数であり、 δ (0 < δ < 0.5)は非整合性を表す.

2.5.1 室温測定

Ba(Fe_{1-x}Sc_x)₁₂O₁₉の室温(296 K)における 001 方向の中性子回折パターンを図 2.5.1.1~2.5.1.11に示す. 順番に x=0, x=0.128, x=0.153, x=0.189, x=0.193 である. 以下に, それぞれについて特徴を解説する.

図 2.5.1.1 に 296 K における Sc 濃度 x=0 単結晶の中性子ラウエ写真を示す.また,図 2.5.1.2 に図 2.5.1.1 から得られた 296 K における Sc 濃度 x=0 単結晶の 001 方向の TOF 中性 子回折パターンを示す. Sc 濃度 x=0 の中性子回折パターンは核散乱ピークと磁気散乱ピー クが混成し,00 2n の偶数に指数付けされる回折ピークのみが観測される.このことから, 296 K における Sc 濃度 x=0 は, c 軸に共線なフェリ磁性であることがわかる.なお,005, 007 付近に現れているピークは多重散乱によるピークである.

図 2.5.1.1 296 K における Sc 濃度 x=0 単結晶の中性子ラウエ写真.

図 2.5.1.2 296 K における Sc 濃度 x=0 単結晶の 001 方向の TOF 中性子回折パターン.

図 2.5.1.2 296 K における Sc 濃度 x=0 単結晶の 001 方向の TOF 中性子回折パターン. 図 2.5.1.3 に 296 K における Sc 濃度 x=0.128 単結晶の中性子ラウエ写真を示す.また,図 2.5.1.4 に図 2.5.1.3 から得られた 296 K における Sc 濃度 x=0.128 単結晶の 001 方向の TOF 中性子回折パターンを示す.Sc 濃度 x=0.128 の中性子回折パターンは Sc 濃度 x=0 と同様, 核散乱ピークと磁気散乱ピークが混成し,00 2n の偶数に指数付けされる回折ピークのみ が観測される.このことから,296 K における Sc 濃度 x=0.128 は, c 軸に共線なフェリ磁 性であることがわかる.なお,005 付近に現れているピークは多重散乱によるピークであ る.

図 2.5.1.3 296 K における Sc 濃度 x=0.128 単結晶の中性子ラウエ写真.

図 2.5.1.4 296 K における Sc 濃度 x=0.128 単結晶の 001 方向の TOF 中性子回折パターン.

図 2.5.1.5 に 296 K における Sc 濃度 x=0.153 単結晶の中性子ラウエ写真を示す.また, 図 2.5.1.6 に図 3.3.1.5 から得られた 296 K における Sc 濃度 x=0.153 単結晶の 001 方向の TOF 中性子回折パターンを示す. Sc 濃度 x=0.153 の中性子回折パターンは,00 2n の偶数 で指数付けされる核散乱ピークの両側に,00 2(n±δ)の位置に磁気衛星反射も観測された. このことから,296 K における Sc 濃度 x=0.153 は, c 軸に沿った磁気の周期性に関連するδ で特徴づけられる,ヘリカル磁性であることを示している.

図 2.5.1.5 296 K における Sc 濃度 x=0.153 単結晶の中性子ラウエ写真.

図 2.5.1.6 296 K における Sc 濃度 x=0.153 単結晶の 001 方向の TOF 中性子回折パターン.

図 2.5.1.7 に 296 K における Sc 濃度 x=0.189 単結晶の中性子ラウエ写真を示す.また, 図 2.5.1.8 に図 2.5.1.7 から得られた 296 K における Sc 濃度 x=0.189 単結晶の 001 方向の TOF 中性子回折パターンを示す. Sc 濃度 x=0.189 の中性子回折パターンは,00 2n の偶数 で指数付けされる核散乱ピークの両側である 00 2(n±δ)の位置に磁気衛星反射も観測され た.また,アンチフェロ成分を特徴づける,00 2n±1 の奇数に指数付けされる回折ピークが 現れた.このことから,296 K における Sc 濃度 x=0.189 は,ヘリカル磁性とアンチフェロ 成分を持つ磁性が混成した磁性であることがわかる.

図 2.5.1.7 296 K における Sc 濃度 x=0.189 単結晶の中性子ラウエ写真.

図 2.5.1.8 296 K における Sc 濃度 x=0.189 単結晶の 001 方向の TOF 中性子回折パターン.

図 2.5.1.9 に 296 K における Sc 濃度 x=0.193 単結晶の中性子ラウエ写真を示す.また, 図 2.5.1.10 に図 3.3.1.9 から得られた 296 K における Sc 濃度 x=0.193 単結晶の 001 方向の TOF 中性子回折パターンを示す. Sc 濃度 x=0.193 の中性子回折パターンは,00 2n の偶数 で指数付けされる核散乱ピークと,00 2n±1 の奇数に指数付けされる回折ピークが現れた. このことから,296 K における Sc 濃度 x=0.193 は,アンチフェロ成分をもつ磁性であるこ とがわかる.

図 2.5.1.9 296 K における Sc 濃度 x=0.193 単結晶の中性子ラウエ写真.

図 2.5.1.10 296 K における Sc 濃度 x=0.193 単結晶の 001 方向の TOF 中性子回折パターン.

以上の結果から,室温において Ba(Fe_{1-x}Sc_x)₁₂O₁₉は, x=0~0.128 でフェリ磁性であり, x=0.153 でヘリカル磁性が発現し, x=0.189 でヘリカル磁性との共存する相を経て, x=0.193 でアンチフェロ成分を持つ磁性となることが分かった.

図 2.5.1.11 296 K における Ba(Fe_{1-x}Sc_x)₁₂O₁₉の 001 方向の中性子回折パターン

2.5.2 温度変化測定

Sc 濃度 x≦0.153 の温度変化測定

図 2.5.2.1~2.5.2.8 は,各 Sc 濃度 x 結晶における典型的な 001 中性子回折パターンの温度 依存性を示したものである.図 2.5.2.1 の x=0,図 2.5.2.1 の x=0.0578 結晶では,すべての 温度で核散乱ピーク 00 2n のみが観測された.図 2.5.2.3 の x=0.0704 結晶では,99 K,200 K,298 K で核散乱ピーク 00 2n のみが観測された.4 K の低温において,非整合な磁気衛 星反射が観測され,小さいながらもヘリカル磁性の発現を示唆している.図 2.5.2.4 の x=0.0735 および図 2.5.2.5 の x=0.0884 結晶も同様に低温の3 K のみ磁気衛星反射が観測さ れた.一方,図 2.5.2.6 の x=0.112 結晶では 99 K,4 K で 00 2n の核散乱ピークに対し比較 的強い磁気衛星反射が観測された.また,図 2.5.2.7 の x=0.128 結晶では,220 K では核散 乱ピーク 00 2n のみが観測された.202 K 以下では非整合な磁気衛星反射がはっきりと観測 された.図 2.5.2.8 の x=0.153 結晶では,296 K 以下のすべての温度で磁気衛星反射が観測 された.

図 2.5.2.1 Sc 濃度 x=0 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.2 Sc 濃度 x=0.0578 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.3 Sc 濃度 x=0.0704 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.4 Sc 濃度 x=0.0735 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.5 Sc 濃度 x=0.0884 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.6 Sc 濃度 x=0.112 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.7 Sc 濃度 x=0.128 単結晶の 00l 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.8 Sc 濃度 x=0.153 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

次に、磁気衛星反射強度の温度変化を示す.磁気散乱ピークが観測される x≥0.0704 結 晶では、磁気散乱ピークは温度が上昇するとともに減少していき、特定の温度でゼロとな る.この温度がヘリカル磁性からフェリ磁性への磁気相転移温度であり、磁気散乱反射の 強度の温度変化から、正確に求めることが可能である.図 2.5.2.9 ~ 図 2.5.2.14 は各 Sc 濃 度 x で 00 2(n±δ)の周辺に現れる複数の磁気散乱ピークの温度変化のグラグである.00<u>10</u> の核散乱ピークで正規化している.磁気衛星反射のピークは温度の上昇とともに減少し、 x=0.0704 では 46 K, x=0.0735 では 50 K, x=0.112 では 176 K, x=0.128 では 211 K, x=0.153 では 313 K でゼロとなり、ヘリカル磁性からフェリ磁性への磁気相転移温度であることが 分かった.

図 2.5.2.9 Sc 濃度 x=0.704 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.10 Sc 濃度 x=0.0735 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.11 Sc 濃度 x=0.0884 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.12 Sc 濃度 x=0.112 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.13 Sc 濃度 x=0.128 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.14 Sc 濃度 x=0.153 単結晶の磁気散乱ピーク強度の温度変化

Ba(Fe1-xScx)12O19のヘリカル磁気構造²³⁾

ここで、中性子回折の温度変化測定から、Ba(Fe_{1-x}Sc_x)₁₂O₁₉が具体的にどのようなヘリカ ル磁気構造となるか検証した.図 2.5.2.15 に代表的なヘリカル磁気構造を示す.これらの ヘリカル磁気構造の特徴は、特定の方向に関する磁気モーメントの配列の周期が、原子配 列の周期と無関係である Incommensurate 構造である点である.詳細については4章で述べ る.

図 2.5.2.15 代表的なヘリカル磁気構造

001 方向の中性子回折データ図 2.5.2.3~図 2.5.2.8 で、磁気衛星反射が観測されることから、磁気モーメントの ab 面成分が存在することが示唆される.また、図 2.5.2.16 に x=0.128 結晶のミラー指数 130 で指数付けされる結晶面からの回折強度の温度依存性を示す.一般的に、hk0 回折ピークには、磁気モーメントの c 軸成分が強く反映される.例えば、x=0.128 結晶における、ヘリカル磁性とフェリ磁性の磁気相転移温度である 211 K 以下では、温度減少に伴い強度が大きく減少していることから、磁気モーメントの c 軸成分が存在することが示唆された.

以上の結果から, Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気モーメントは, 図 2.5.2.17, 図 2.5.2.18 に示す ような *ab* 面成分,および *c* 軸成分を持つ, 円錐構造のヘリカル磁性であることが示唆された.

図 2.5.2.16 x=0.128 結晶のミラー指数 130 回折ピークの回折強度の温度依存性

図 2.5.2.17 磁気モーメントと結晶反射面との関係

図 2.5.2.18 Ba(Fe_{1-x}Sc_x)₁₂O₁₉の円錐型のヘリカル磁性のモデル図

Sc 濃度 x ≥ 0.189 の温度変化測定

一方, x=0.189 結晶では, アンチフェロ磁性成分の存在を示す整合的な 00 2(n±0.5)磁気 ピークに加え, 非整合的な磁気衛星反射が混在した複雑な 001 回折パターンが見られた. 図 2.5.2.19 は x=0.189, 図 2.5.2.20 は x=0.193 の典型的な 001 中性子回折パターンの温度依 存性を示したものである. 図 2.5.2.19 の x=0.189 結晶の中性子回折パターンでは, 009 で示 される非整合の磁気衛星反射のピークと, 整合の磁気ピークが混在していることから, こ の結晶はヘリカル磁性とアンチフェロ成分を含む磁性が混在していることが示唆される. ここで, アンチフェロ磁性成分を持つ磁性とは, 磁気モーメントが完全に ab 面上にあるア ンチフェロ磁性や, c 軸方向に成分を持つスピンキャント磁性のことである. アンチフェ ロ磁性相における具体的な磁気構造については, 4 章で詳しく解説する.

図 2.5.2.19 Sc 濃度 x=0.189 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.20 Sc 濃度 x=0.193 単結晶の 001 方向の TOF 中性子回折パターンの温度変化

図 2.5.2.21 は, x=0.189 結晶の非整合磁気散乱ピークと 009 整合磁気ピークを 00<u>10</u>の核 散乱強度で規格化したものの温度変化を示している.温度が高くなるにつれて,磁気散乱 強度は減少する.アンチフェロ成分が消失した 464 K は,磁化測定で得られた常磁性への 磁気相転移温度である 470 K とほぼ一致するため,この温度をネール点とみなすことがで きる.図 2.5.2.22 に示す x=0.193 の結晶の 00/中性子回折パターンについても,微小な磁気 衛星反射とともに,整合磁気ピーク 009 が見られる.これらの磁気散乱強度は,図 2.5.2.22 に示すように,ネール点に相当するヘリカル磁性成分では 363 K,アンチフェロ成分は 433 K で消失すると推定された.

図 2.5.2.21 Sc 濃度 x=0.189 単結晶の磁気散乱ピーク強度の温度変化

図 2.5.2.22 Sc 濃度 x=0.193 単結晶の磁気散乱ピーク強度の温度変化

2.6 Ba(Fe1-xScx)12O19の磁気相図

図 2.6.1 は、前述の磁化測定および中性子回折実験の結果に基づいて作成した、Ba(Fe_{1-x}Sc_x)₁₂O₁₉の *T*-x 平面における磁気相図である.常磁性が現れる温度(Curie 温度または、 Néel 温度)は、Sc 濃度 x の増加とともに減少する. $x \ge 0.06$ でヘリカル磁性が現れ、ヘリ カル磁性からフェリ磁性への磁気相転移温度は Sc 濃度 x の増加とともに上昇し, x=0.18 に おける常磁性相転移温度付近に到達する. アンチフェロ磁性相は $x \ge 0.18$ ではヘリカル磁 性の延長として現れるが、x=0.19付近ではヘリカル磁性と共存し、370 K 以上では単独で 現れる. このため、 $x \ge 0.18$ の常磁性相転移温度は Néel 温度であることが分かった. 既報 ¹⁷⁾の通り、 $x \ge 0.2$ では単結晶が得られないため、より高濃度の磁気相を明らかにすること はできない.得られた磁気相図から、Ba(Fe_{1-x}Sc_x)₁₂O₁₉は室温を含んだ比較的広い領域でヘ リカル磁性が現れるため、実用面で興味深い物質であることがわかる.

Sc 濃度 <i>x</i>	Curie 温度 T _C (K)	Curie 温度 T _C (K)	磁気相転移温度(K)	磁気相転移温度(K)
			中性子回折	SQUID
0	744		-	-
0.0163	729		-	-
0.0261	709		-	-
0.0418	692		-	-
0.0576	653		0	-
0.0704	637		46	-
0.0735	627		50	57
0.0884	-		90	-
0.0968	582		-	121
0.128	546		211	213
0.137	537		-	213
0.153	505		313	264
0.160	500		-	-
0.189		470	446	-
0.193		445	440	-

表 2.6.1 Sc 濃度 x と Curie 点, Néel 点および磁気相転移点との関係.

図 2.6.1 Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気相図

2.7 結言

様々な Sc 濃度 x の Ba(Fe1-xScx)12O19 単結晶に対して、マクロな磁化測定、および TOF 中 性子回折実験を行った.マクロな磁化測定により、磁気相転移温度および、常磁性転移温 度を決定した.また、中性子回折の温度変化実験によって、ヘリカル磁性からフェリ磁性、 常磁性への磁気相転移温度を決定し、*T*-x 平面における Ba(Fe1-xScx)12O19の磁気相図を作成 した.磁気相図によると、x≥0.06 でヘリカル磁性が発現する.ヘリカル磁性が発現する温 度範囲は、Sc 濃度の増加とともに拡大していき、室温においては x=0.15 でヘリカル磁性 が現れた.さらに、ヘリカル磁性からフェリ磁性への磁気相転移温度の境界は、x=0.18 で 常磁性の磁気相転移の境界と衝突し、Néel 温度となる.x=0.19 ではアンチフェロ磁性相が 発生し、ヘリカル磁性との共存範囲を超えた連続相となる.常磁性相転移温度は、Sc 濃度 x の増加とともに直線的に低下する.

このように、室温を含む比較的広い領域でヘリカル磁性が発現するため、マルチフェロ イックスを応用したデバイスへの応用が期待できる結果となった.これらは、学術的に意 義があるだけでなく、将来における次世代の材料設計にも有用である結果となった.

参考文献

- T. Kimura, G. Lawes, P. Ramirez, Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures, Phys. Rev. Lett. 94(2005)137201-1-137201-4, https://dx.doi.org/10.1103/PhysRevLett.94.137201.
- S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Lowmagnetic-field control of electric polarization vector in a helimagnet, Science 319 (2008) 1643-1646, https://dx.doi.org/10.1126/science.1154507.
- H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, K. Hirota, Two distinct ferroelectric phases in the multiferroic Y -type hexaferrite Ba₂Mg₂Fe₁₂O₂₂, Phys. Rev. B 80 (2009) 180419-1-180419-4, https://dx.doi.org/10.1103/PhysRevB.80.180419.
- S. Ishiwata, D. Okuyama, K. Kakurai, M. Nishi, Y. Taguchi, Y. Tokura, Neutron diffraction studies on the multiferroic conical magnet Ba₂Mg₂Fe₁₂O₂₂, Phys. Rev. B 81 (2010) 174418-1-174418-8, <u>https://dx.doi.org/10.1103/PhysRevB.81.174418</u>.
- 5) S. Hirose, K. Haruki, A. Ando, T. Kimura, Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type BaSr(Co₂₋ _xZn_x)Fe₁₁AlO₂₂ ceramics, Appl. Phys. Lett. 104 (2014) 022907-1-022907-4, <u>https://dx.doi.org/10.1063/1.4862432</u>.
- 6) V. Kocsis, T. Nakajima, M. Matsuda, A. Kikkawa, Y. Kaneko, J. Takashima, K. Kakurai, T. Arima, F. Kagawa, Y. Tokunaga, Y. Tokura, Y. Taguchi, Magnetization-polarization cross-control near room temperature in hexaferrite single crystals, Nat. Commun. 10 (2019) 1247-1252, <u>https://dx.doi.org/10.1038/s41467-019-09205-x</u>.
- 7) Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura, Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105 (2010) 257201-1-257201-4, https://dx.doi.org/10.1103/PhysRevLett.105.257201.
- S. Gupta, S. K. Upadhyay, V. Siruguri, V. G. Sathe, E. V. Sampathkumaran, Observation of magnetoelastic and magnetoelectric coupling in Sc doped BaFe₁₂O₁₉ due to spin-glass-like phase, J. Phys.: Condens. Matter 31 (2019) 295701, https://dx.doi.org/10.1088/1361-648X/ab1798.
- S. Gupta, S. K. Deshpande, V.G. Sathe, V. Siruguri, Effect of scandium substitution on magnetic and transport properties of the M -type barium hexaferrites. J. Alloys Compd. 815 (2020) 152467, <u>https://dx.doi.org/10.1016/j.jallcom.2019.152467</u>
- 10) "振動試料型磁力計 ソフトウェア取扱説明書",株式会社玉川製作所,(2009).

- 11)株式会社 玉川製作所(2020), <u>http://www.tamakawa.co.jp/vsm/vsmkoukandosisutemu</u>
 (2021年11月12日アクセス).
- Harry E. Burke, 監訳 河本修, "磁気現象ハンドブック", 共立出版株式会社(1995), p79, p80.
- 13) 電気学会 マグネティック技術委員会, "磁気工学の基礎と応用", コロナ社(2000), p26, p27, p175, p176.
- 14) 近桂一郎,安岡弘志,"実験物理学講座6 磁気測定I",丸善株式会社(2000), pp.64-77.
- 15) 河野丈治, "SQUID(Superconducting Quantum Interference Device)", エネルギア総研レビ ユー No.29, (2012).
- 16) "磁気特性計測システム 取扱説明書",日本カンタム・デザイン株式会社,(2013).
- 17)田中三郎, "電子情報通信学会「知識ベース」",電子情報通信学会 S2群-2編-6章 (ver.1/2011.1.17), (2011).
- N. Momozawa and Y. Yamaguchi, Field-Induced Commensurate Intermediate Phases in Helimagnet (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂(x=0.748), J. Phys. Soc. Jpn. 62, 1292 (1993).
- 19) 梶谷剛, "結晶構造学 上級編",株式会社アグネ技術センター(2015), pp.1-9, pp. 75-82.
- 20) C.KITTEL, "個体物理学入門 上", 丸善株式会社(1998), pp.30-60.
- 21) XRD Info for X-Ray Diffraction Analysis, "美しい結晶の世界へようこそ" http://www.chem.kumamoto-u.ac.jp/~xrd-info/information.html (2021年11月12日アクセス)
- 22) 星埜禎男,"中性子回折", 槇書店 (1961), pp.1-26, pp. 45-47.
- 23) 星埜禎男, "Screw spin 構造による中性子回折効果", JPS, 18, 3, (1963), p.125.
- 24) N. Momozawa, Y. Yamaguchi, H. Takei, and M. Mita, Modification of Helix in (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂ Due to Applied Magnetic Field, J. Phys. Soc. Jpn. 54, 3895 (1985).
- 25) Aleshko-Ozhevskiĭ, R. A. Sizov, I. I. Yamzin, V. A. Lyubimtsev, Helicoidal antiphase spin ordering in hexagonal ferrites of the Ba(Fe_{1-x}Sc_x)₁₂O₁₉ system, Sov. Phys. JETP 28 (1968) 425-430.
- 26) S. Hoshino and Y. Yamada, Butsumi 18, 122 (1963) [in Japanese].
- 27) N. Momozawa, Y. Yamaguchi, H. Takei, and M. Mita, Magnetic Structure of (Ba_{1-x}Sr_x)₂Zn₂Fe₁
 2O₂₂ (x=0-1.0) J. Phys. Soc. Jpn. 54, 771 (1985).
- N. Momozawa, Y. Yamaguchi, and M. Mita, Magnetic Structure Change in Ba₂Mg₂Fe₁₂O₂₂, J. Phys. Soc. Jpn. 55, 1350 (1986).
- 29) N. Momozawa, Neutron Diffraction Study of Helimagnet (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂, J. Phys. Soc. Jpn. 55, 4007 (1986).
第3章 Ba(Fe_{1-x}Sc_x)₁₂O₁₉のヘリカル磁性の回転角に関する研究

3.1 緒言 1)

結晶の磁気構造は、単位格子セルとの関係から一般的に commensurate 構造と incommensurate 構造の2種類に分類される. commensurate 構造とは,単位磁気構造セルが 単位格子セルの整数倍となっている磁気構造のことである。例えば、永久磁石などの強磁 性(図3.1.1フェロ磁性)では、すべての磁気モーメントが同じ方向に配列し、単位磁気構 造セルが単位格子セルに一致する.一方,隣り合う磁気モーメントが反対方向を向いて互 いに打ち消しあって配列する反強磁性(図3.1.1反強磁性)では、単位磁気構造セルが単位 格子セルに対して2倍の大きさを持つことになる.また,複数の磁気モーメントが同じ軸 方向を向くが、その大きさが異なるフェリ磁性(図 3.1.1 フェリ磁性)や、大きさは同じだ が、対称な2つの方向を向くスピンキャント磁性(図3.1.1スピンキャント磁性)などは commensurate 構造に分類される. 一方, incommensurate 構造は, 磁気モーメントの大きさ と向きが連続して変化する構造であり、単位格子セルとの対応関係は存在しない. 代表的 なものとしては、スクリュー構造(図 3.1.1(a))や正弦波構造(図 3.1.1(b))などがあげら れる. また, incommensurate 構造は試料全体では磁化が打ち消しあうため, 磁化測定によ る、アンチフェロ磁性との区別は困難であり、磁気構造の正確な情報を得るには、中性子 回折実験が利用される、物質の磁化の周期性は、バンド構造などの基本的な物性と関係す るため、物性理解のための重要な情報となる.

格子点

逆格子空間における,磁気の周期構造を解説する.図 3.1.2 は,Sc 濃度 x=0.128 結晶の 温度毎の Laue 回折パターンを,逆格子空間に展開した図である.データ分析ソフトウェア である STARGazer²⁾を使用した. 横軸 h=0 の列に着目すると,フェリ磁性である 285 K の Commensurate 構造では,c軸上の格子点である l=2n 上のみ,回折スポットが強く観察され る.一方,ヘリカル磁性である 70 K の Incommensurate 構造では,格子点上に乗らない磁 気衛星反射によるスポットが c 軸方向に 2δ(0 < δ < 0.5)だけ離れた場所に観測される.3 K では 2δの幅がさらに増加して観測さる.逆格子上では,磁気の周期構造に応じてこのよう なスポットが観測されることになる.

図 3.1.2 x=0.128 結晶の回折パターンを逆格子空間に展開した図

本章では、Ba(Fe_{1-x}Sc_x)₁₂O₁₉の Incommensurate な磁気の周期構造を決定する.磁化測定に よる決定は困難であるため、正確な情報を得るには、中性子回折実験を利用する.具体的 には、TOF-Laue 中性子回折の温度変化測定で観測される、磁気衛星反射の変位*δ*から、ヘ リカル磁性を特徴づける結晶学的に等価な磁気モーメントの回転角*ф*について、Sc 濃度 x と温度 T 依存性を詳細に決定する.磁気の周期構造は磁気特性に関連するため重要な情報 となる.

第1章で述べたように、ヘリカル磁性体の回転角 かはマルチフェロイックス特性と重要な関係性を持つ. かに代表されるらせん構造は、磁気に対する電気応答を決定する重要なパラメーターとなるため、かの温度特性は材料特性を決める重要な情報となりうる.

図 3.1.3 ヘリカル磁性体の回転角のとマルチフェロイックス特性

3.2 Ba(Fe1-xScx)12O19のヘリカル磁性の回転角の算出方法

図 3.2.1 (b)は x=0.128 結晶の 00*l* 中性子回折プロファイルの温度変化である. 磁気衛星 反射は 00 2*n* の核散乱ピークからの非整合な変位 2 δ で観測される. このときの δ が磁気構 造の incommensurate な周期性を表す量である. ヘリカル磁性における回転角 ϕ は, 図 3.2.1 (a)に示すように,結晶学的に等価な磁気モーメントが *ab* 面の *c* 軸方向に *c*/2 だけ離れた磁 気モーメント同士の *c* 面内でなす角度とされる. ϕ 0 は上記の 00*l* 中性子回折パターンの非 整合性を利用して, $\phi_0=2\pi\delta$ の関係から算出される ²⁻⁴⁾.

図 3.2.1 (a) x=0.128 結晶のヘリカル回転角 Ø (b) 001 中性子回折パターン

3.3 Ba(Fe1-xScx)12O19のヘリカル磁性の回転角

Ba(Fe1-xScx)12O19の各 Sc 濃度 x における,結晶学的に等価な磁気モーメントのなす回転 角 φの温度変化を算出した.算出には,図 2.5.2.1 ~ 図 2.5.2.8,図 2.5.2.19,図 2.5.2.20の 各 Sc 濃度 x の,中性子回折プロファイルの温度変化から各温度における変位δを抽出し, φ=2πδの関係から算出した.ここで,x=0.153の結晶では,図 3.3.1 (a)に示すように,複数 の非整合性を持つ磁気散乱の混成により,幅広い磁気散乱ピークが観測される.複数の非 整合が共存していることは,単結晶中の Sc 分布が不均一であること,温度が高くなると, 熱振動が活発になるため,ピークが広くなるためと考えられる.図 3.3.1 (b)に示すように, ブロードな磁気散乱ピークを 2 つまたは 3 つのガウシアンピークに分離し,回転角 φ を抽 出した.図 3.3.2 は,各結晶の φ の温度依存性を示したものである.色のついた帯は,分離 を行った複数の incommensurate磁性の範囲を示している.すべての結晶において φ は温度 の上昇とともに減少する. 例えば, x=0.128 結晶のかは 3 K で 143°であり, 温度の上昇とと もに徐々に減少し, 209 K で 107°に達した後消失する. さらに, 図 3.3.2 から, かは 0 < か < 90 または 170 < か < 180 の値取らないことが分かる. 図 3.3.3 は, 6, 150, 200, 300 K におけ るかの x 依存性を示している. かの開始点は, 6 K で x = 0.06, 300 K で x = 0.15 であり, x の 増加に伴って 6 K の 90°, 300 K の 120°から閾値を超えて 170°に達し, 再び閾値を超えて 180°, すなわちアンチフェロ磁性相に至る.

(a) x=0.153 結晶の(001)方向の中性子回折パーン

(b) 磁気散乱ピークの分

図 3.3.1 (a) x=0.153 結晶の 00/ 中性子回折パターンの温度依存性 (b) 磁気散乱ピークを 2 つまたは 3 つのガウス型ピークに分離した図

図 3.3.2 (a) Sc 濃度 x 結晶における øo の温度依存性

図 3.3.3 6,150,200,300 K における Øの Sc 濃度 x 依存性

3.4 結言

中性子回折の温度変化測定をもとに、 $Ba(Fe_{1-x}Sc_x)_{12}O_{19}$ のヘリカル回転角 ϕ_0 を算出した. ヘリカル回転角 ϕ_0 は、温度の上昇とともに減少する傾向を示した. x>0.153では、Sc 分布 の不均一性に起因する複数の incommensurate な磁性が混在していることが分かった. さら に、 ϕ_0 には明確な閾値があり、 $0^\circ \sim 90^\circ$ と 170° ~ 180°の値をとることはできないことが 示唆され、 $x \ge 0.153$ では低温側で閾値に向けて収束する結果となった.

また、同温度における ϕ_0 の Sc 濃度依存性では、x の増加とともに ϕ_0 は incommensurate な領域で増加していき、0.193 以上では 180°のアンチフェロ成分をもつ commensurate な磁 性となることが分かった.本実験により、Sc 濃度と温度で特定される、Ba(Fe_{1-x}Sc_x)₁₂O₁₉結 晶の磁気の周期を特徴づける回転角 ϕ_0 が明らかとなった.回転角 ϕ_0 に代表されるらせん構 造は、マルチフェロイックス特性である、磁気に対する電気応答を決定する重要なパラメ ーターとなるため、材料設計の応用面でも重要な意義を持つ.また、磁気の周期性は、結 晶の基本的な物性と関係するため、Ba(Fe_{1-x}Sc_x)₁₂O₁₉の物性理解のために重要であると考え られる.

参考文献

- 大山研司、中性子による磁気構造解析の実際、RADIOISOTOPES, 59, 477-490 (2010)、 <u>https://www.jstage.jst.go.jp/article/radioisotopes/59/8/59_8_477/_pdf</u> (2021 年 11 月 12 日 アクセス).
- N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita, Modification of Helix in (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂ Due to Applied Magnetic Field, J. Phys. Soc. Jpn. 54 (1985) 3895-3903, https://journals.jps.jp/doi/10.1143/JPSJ.54.3895
- N. Momozawa, Y. Yamaguchi, M. Mita, Magnetic structure change in Ba₂Mg₂Fe₁₂O₂₂, J. Phys. Soc. Jpn. 55 (1986) 1350-1358, https://doi.org/10.1143/JPSJ.55.1350.
- 4) N. Momozawa, Neutron diffraction study of helimagnet (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂, J.Phys. Soc. Jpn. 55 (1986) 4007-4013, https://doi.org/10.1143/JPSJ.55.4007

第4章 Ba(Fe1-xScx)12O19のアンチフェロ磁気相の磁気構造解析

4.1 緒言

これまで、中性子回折および磁化測定により Ba(Fe_{1-x}Sc_x)₁₂O₁₉の温度 T, Sc 濃度 x の磁 気相図を作製した.これによると、Sc濃度 x≥0.06の領域でヘリカル磁性が発現し、共存 領域を経て、x≥0.19 でアンチフェロ成分を持つ磁性相が発現することが分かった.また、 中性子回折の温度変化測定で観測される磁気衛星反射をもとに、結晶学的に等価な磁気モ ーメントが c 軸方向に c/2 だけ離れた磁気モーメント同士のなす角度であるヘリカル回転 角 かを算出した.これによると、同温度における かの Sc 濃度依存性では、x の増加とと もにかは Incommensurate な領域で増加していき, 0.193 以上では 180°のアンチフェロ成分 をもつ commensurate な磁性となることが分かった.本章の目的は,中性子回折測定のデー タを解析して, Ba(Fe1-xScx)12O19の Sc 濃度 x=0.193の Incommensurate 磁気構造で発現する, アンチフェロ成分を持つ磁気構造を決定することである.これまで述べてきたように、六 方晶フェライト Ba(Fe1-xScx)12O19 は複雑な系であり、さらに Incommensurate な磁性である ヘリカル磁気構造では、扱うパラメータが増加し、さらに複雑な系を扱うことになる.こ のため、まずはフェリ磁性やアンチフェロ磁性にみられる Commensurate 磁気構造につい て解析を実施する. 手順としては, x=0 の室温のフェリ磁性に関して磁気構造解析を実施 し、その妥当性を検証する. すなわち、中性子回折データを結晶磁気解析ソフトウェアに インプットし、原子位置、磁気モーメントの向き・大きさなどミクロな結晶・磁気構造を 決定する.同様な手法により,高 Sc 濃度 x=0.193 結晶で発現するアンチフェロ磁気相のス ピンキャント磁気構造を決定する. 各 Fe サイトの Sc イオン分布, および磁気モーメント の向き・大きさを決定する. その結果から, アンチフェロ磁気構造における競合する超交 換相互作用について考察する.

4.2 結晶および磁気構造解析

結晶・磁気構造解析により、中性子回折実験より得られたデータから、結晶、磁気構造 のパラメータの決定する.解析には、データ分析ソフトウェアである STARGazer、構造解 析ソフトウェアである JANA2006,結晶構造可視化ソフトウェアである VESTA を使用す る.まず、中性子回折データをデータ分析ソフトウェアである STARGazer に入力して、結 晶の空間群の決定や、格子定数の決定(*a*, *b*, *c*, *α*, *β*, *γ*) など、結晶の基本的な物性を 決定する.次に、STARGazer から出力される、統合ファイルである*.inregrate ファイルを、 構造解析用ソフトウェアである JANA2006 に入力し、原子核による回折ピークに含まれる 結晶構造因子の実測値と、想定されるモデルにおける計算値の比較から、各 Fe サイトにお ける、Sc イオン分布の決定を行う.結晶構造モデルが決定した後、磁気による回折ピーク に含まれる磁気構造因子に関する同様な比較から、各 Fe サイトにおける、磁気モーメント の向きや大きさの決定を行う.図 4.2.1 に結晶磁気構造解析の全体フローを示す.

図 4.2.1 結晶・磁気構造解析の全体フロー

4.2.1 データ処理ソフトウェア

STARGazer¹⁾は、中性子単結晶回折装置 SENJU で用いられている Linux 上で動作するデ ータ処理ソフトウェアである.中性子回折実験で得られた 3 次元 (x, y, TOF) 回折デー タから UB 行列の精密化を行い、面指数 hkl で特定される回折ピークの収集を行う.また、 回折ピークから、空間群の決定や、格子定数の決定 (a, b, c, α , β , γ) など、結晶の基 本的な物性を決定する機能を持つ.また、STARGazer には、データを可視化する GUI 機能 も用意されており、MultiViewer と ReciproMapper の 2 つがある. MultiViewer は、37 個の 検出器で捉えた hkl 回折ピークを、3 次元回折データとして表示する機能である. ReciproMapper は、得られた回折データから逆格子空間上にスポットとして表示させる機 能である.図 4.2.1.1 にデータ処理過程のフローチャートを示す.図中の数字が処理工程の 番号である.

図 4.2.1.1 データ処理過程のフローチャート

図 4.2.1.1 の処理工程にしたがって各処理ごとの機能概要を述べる.

1. EvenToHist

主に2つからなる.1つ目の機能は、イベントデータ(生データ)をヒストグラムデー タ(補正データ)に変換する機能である.イベントデータでは、座標(x, y, TOF)における 中性子カウントがゼロであるデータについても過剰に記録されている.これらの過剰な情 報を削減し、データサイズの圧縮を行う.もう1つの機能は、各検出器内のピクセルの検 出効率のばらつきや、波長ごとの中性子ビーム強度の差と波長ごとの検出効率の差を補正 する機能である.補正にはバナジウム球に中性子を照射したデータを用いる.

2. FindPeaks

3次元ヒストグラムデータから,設定した閾値以上の反射ピークを収集する.また,TOF のピーク位置から中性子波長を計算し,各ピークの逆格子座標に変換する.

3. FindCell

FindPeaks で求めた逆格子座標と単位格子長(XRD の結果から 2.4 nm を使用)から UB
行列を決定する.ここで UB 行列とは、データの x, y, TOF 座標系を逆格子座標系である
h, k, l座標系に変換する行列のことである.

4. IndexPeaks

FindCell で決定した UB 行列, 各ピークの逆格子座標, ゴニオメーターの角度から, 各回折ピークに対し指数付けを行う. 指数付けは逆格子空間で観測された回折ピークと計算された回折ピーク位置間の距離を最小二乗法で計算し, 既定の閾値よりも低い場合に付けられる.

5. ReducedCell

基本格子として求めた UB 行列を用いて, 選択した格子タイプの変換行列を作製する. Ba(Fe_{1-x}Sc_x)₁₂O₁₉は六方晶系なので Hexagonal を選択する.

6. LsUBMat

指数付きのピークを使用して UB 行列の精密化を行う.新しい UB 行列 UB_N は次のよう に計算される.

$$\mathbf{UB}_{\mathbf{N}} = \mathbf{UB}_{\mathbf{O}} \cdot \left(\mathbf{UB}_{\mathbf{t}}\right)^{-1}$$
(2.20)

ここで UBo は FindCell で決定した UB 行列で, UBt は ReducedCell で決定した変換行列 である. FindPeaks で決定した観測ピークの位置から, UB_Nを使用して予測されるピーク位 置までの距離を,最小二乗(Least-squares)法を用いて最小化する.決定された UB 行列の 精度は観測値と計測値間のミラー指数の差 ε hkl によって評価され, 閾値(ε hkl=0.1)未満 の値であるとき一致と判断する.正確でない場合は FindPeaks まで戻り, ピークの閾値を 変化させて同じように LsUBMat まで求めて閾値未満になるまで繰り返す.

7. PeakIntegration

検出器ごとに hkl 回折強度を収集するし統合ファイルである*. Integrate を生成する.格 子タイプによって消滅則に従わない回折ピークは除外される.また,ユーザー指定の分解 能範囲,検出器座標範囲,TOF範囲に対応する回折ピークのみ収集される.回折強度の積 分方法としては加算積分法またはプロファイル積分法が選択できるが,プロファイル積分 法はタンパク質回折データ用に開発されたものであり,加算積分法を用いた.

4.2.2 結晶磁気構造解析ソフトウェア

JANA2006²⁾は、磁性体の粉末、単結晶問わず、X線回折、中性子回折、電子線回折による構造決定を行うための汎用プログラムである.変調構造の精密化に特化したプログラムから、標準的な結晶学と高度な結晶学を含む普遍的なプログラムへと発展してきた. JANA2006 は、Windows 用 PC で動作する対話型プログラムである.ユーザーは対話型形式で結晶に関連するパラメータを設定し、各種のコマンド選択をすることで解析を実行ことになる.本プログラムは、単結晶または粉末試料から収集した複数の回折データに対して、同時に構造を精密化することができる特徴を持っている.

JANA2006 は、単結晶や粉末の X 線回折、シンクロトロン放射光、中性子回折データを 扱うことができる.また、電子回折データにも対応している.このように様々なデータソ ースを組み合わせて入力データに使うことが可能である.データ入力に続く次のステップ は、回折ピークのセットから、可能な対称操作を抽出し、その結果から結晶の空間群を決 定することになる.入力された単位格子パラメータの精度限界内で、可能な限り高い格子 対称性操作を検索することから始まる.元の結晶単位格子の6倍の体積を持つ単位格子ま でのすべての互換な対称性をテストする.さらに、これらの過程で抽出された対称操作の 組み合わせにより、消滅測に従うべき反射が抽出される.入力データとの比較を行い、最 適な結晶空間群が抽出されることになる.

結晶の空間群や結晶パラメータを入力後に,結晶・磁気モデルの決定が行われる.最小 二乗法を用いた電子密度や磁気モーメントの精密化が行われる.入力データの hkl 回折ピ ークから,結晶構造因子,および磁気構造因子の実験値を読み取り,想定される結晶磁気 モデルによる計算値との信頼度因子 R による比較が行われ,最適なモデルが抽出されるこ とになる.

なお,選択された結晶の基本パラメータは,開始時にデフォルトで有効となるが,対称 性の制限のために精密化できないパラメータを常に固定化することになる.対称性によっ て制限されないパラメータは,GUI上で修正コマンドが用意されている.

4.3 Ba(Fe1-xScx)12O19の空間群・格子定数の決定

データ処理ソフトウェア STARGazer で算出された, $Ba(Fe_{1-x}Sc_x)_{12}O_{19}$ の結晶の格子定数 を表 4.3.1 に示す. 空間群は $P6_3/mmc$ (No.194 六方晶 $a=b\neq c, \alpha=\beta=90^\circ$, $\gamma=120^\circ$),格 子定数はこのようになり, Sc 濃度に比例する結果となり,いずれも妥当な結果となった.

Sc 濃度 x	a = b(nm)	<i>c</i> (nm)
0	0.5880(3)	2.3161(9)
0.128	0.5916(1)	2.3517(4)
0.153	0.5933(2)	2.3557(8)
0.189	0.5931(1)	2.3605(4)
0.193	0.5946(2)	2.3667(5)

表 4.3.1 Ba(Fe_{1-x}Sc_x)₁₂O₁₉の格子定数 (α=β=90°, γ=120°)

4.4 BaFe12O19の室温測定の結晶構造解析

結晶磁気構造解析ソフトウェア JANA2006 で解析された,室温における BaFe₁₂O₁₉の結 晶・磁気構造因子の実験値(F_{obs}),及び計算値(F_{cal})の比較結果を図 4.4.1 に示す. 横軸 が中性子回折実験における結晶・磁気構造因子の観測値,縦軸が想定モデルにおける計算 値である.

約 2260 個の hkl 回折ピークの比較を行った結果, 信頼度 R 因子が 8 の低い値を示した (GOF=7, wR=10).また,室温における,BaFe12O19の分子式あたりの原子座標を表 4.4.1 に,磁気モーメントを表 4.4.2 に示す.この結果得られた,結晶磁気構造図を図 4.4.2 に示 す.表 4.4.1 に示す通り、5 つの異なる Fe サイト毎の磁気モーメントが算出され、2a、2b, 12k サイトでは c 軸に平行,4f1,4f2 サイトでは反平行となり, c 軸に平行なフェリ磁性と なった.また,磁気モーメントの合計の値は 15.43 µBとなり,図 4.4.3 に示す通り,磁化測 定から算出された磁気モーメントの値に近い値を示した.グラフは、実線が磁化測定によ る磁気モーメントの大きさを、赤い点が構造解析の結果算出された磁気モーメントの大き さである.これにより、室温におけるフェリ磁性 BaFe12O19の解析結果が妥当であること が証明された.

図 4.4.1 室温における BaFe₁₂O₁₉の結晶・磁気構造因子の実験値(F_{obs}), 及び計算値(F_{cal})の比較結果

原子	サイト占有率		分率座標	
	Site occupancy	x	y	Z
Ba1	0.087(3)	2/3	1/3	1/4
Fe1(2 <i>a</i>)	0.093(3)	1	1	0
Fe2(2 <i>b</i>)	0.101(3)	0	0	0.257(2)
$Fe3(4f_1)$	0.162(4)	2/3	1/3	-0.027(1)
$Fe4(4f_2)$	0.161(7)	1/3	2/3	0.189(1)
Fe5(12k)	0.466(9)	0.831(0)	0.662(0)	0.108(0)
01	0.147(3)	0	0	0.3495(1)
02	0.201(1)	2/3	1/3	0.054(1)
03	0.245(8)	0.181(2)	0.362(0)	1/4
04	0.473(1)	0.843(1)	0.686(0)	-0.051(1)
05	0.497(0)	0.502(0)	0.004(0)	0.148(1)

表 4.4.1 BaFe12O19の分子式あたりの原子座標

表 4.4.2 BaFe12O19の分子式あたりの原子座標,および磁気モーメント

結晶構造	サイト	Feイオン数(スピン)	磁気モーメント(µB)
			標準偏差
八面体	12k (Fe5)	6(↑)	3.866(2)
	4 <i>f</i> ₂ (Fe4)	2(↓)	-4.558(1)
	2 <i>a</i> (Fe1)	1(↑)	4.091(2)
四面体	$4f_1(\text{Fe3})$	$2(\downarrow)$	-4.462(1)
Five-fold	2 <i>b</i> (Fe2)	1(↑)	4.020(2)
	計		13.267(3)

図 4.4.2 室温における BaFe12O19の結晶・磁気構造図

図 4.4.3 磁化測定から算出された磁気モーメントと 磁気構造解析による磁気モーメントの比較

4.5 Ba(Fe1-xScx)12O19のアンチフェロ磁性の構造解析

これまで, x=0 の室温におけるフェリ磁性について磁気構造解析を実施し,その妥当性 を検証した.その結果,原子位置,磁気モーメントの向き・大きさなどミクロな結晶・磁 気構造について値が一致し,解析結果の妥当性が証明された.よって,これらの磁気構造 解析の手法を Ba(Fe_{1-x}Sc_x)₁₂O₁₉の x=0.193 アンチフェロ磁性の構造解析に適用する.磁気構 造解析を行う前処理として,磁気空間群の選択を行う必要がある.磁気空間群は結晶の空 間群に対して,磁気モーメントの対称性が加味されるため,結晶の空間群とは別の磁気空 間群が候補となる.例えば,図4.5.1 に示すように,磁気モーメントにおける鏡面対称操作 は,操作後のスピンの向きにより区別される操作が存在することになる.このような磁気 の対称性を加味した結果,結晶の空間群である P6₃/mmc とは別の幾つかの磁気空間群が JANA2006 による対称操作の絞り込み機能によって図4.5.2 のように抽出された.

図 4.5.1 磁気空間群における,磁気モーメントの鏡面対称操作

図 4.5.2 JANA2006 で候補となった磁気空間群

中性子回折実験では、観測される回折ピークの指数付けや構造因子の算出において、装置の検出器の不備や、測定限界に起因するノイズパターンを、結晶磁気構造による回折パターンと誤って認識される場合がある。例として、装置由来による多重散乱を、結晶による回折ピークと認識するケースや、検出器からそれることで、実際とは異なる歪なパターンを回折ピークと認識するケースなどがある。このような不正に認識された回折ピークによる結晶・磁気構造因子は、観測値と計算値に大きな差異が生じることとなり、信頼度因子を著しく劣化させ、正確な結晶磁気構造モデル抽出の妨げとなる。不正に取得された回折ピークの除外を効率的に行うため、本研究では AI による解決を試みた。すなわち、正しい回折ピークと誤った回折ピークを教師データとして採用し、AI に学習訓練させることで、機械学習モデルを作成し、不正な回折ピークの除外を試みた。図 4.5.3 にその概念図を示す.

図 4.5.3 不正な回折ピークを識別する学習モデルの作成

作成した機械学習モデルを 6 K における x=0.193 の中性子回折プロファイルに適用し, 不正なピークの除外を試みた.不正な回折ピークを除外しない初期値の状態で,回折ピー ク数が 5087 個,構造因子の信頼度因子が R=12 であった.これに機械学習モデルを適用し て不正なピークを除外したところ,回折ピーク数が 4430 個,構造因子の信頼度因子が R=8 まで削減することができた. 6Kにおける,x=0.193の中性子回折データから得られる結晶・磁気構造因子の観測値と, 想定モデルの計算値の比較結果を図 4.5.4 に示す.約 4430 個の *hkl* 回折ピークの結晶構造 因子,磁気構造因子の比較が行われ, *R* 因子が低い値を示した(GOF=6,結晶 *R*=6 *wR*=7, 磁気 *R*=16 *wR*=17).

図 4.5.4 6 K における, x=0.193 の中性子回折データから得られる 結晶・磁気構造因子の実験値(Fobs),および計算値(Fcal)の比較結果

以上の結果から得られた, x=0.193のアンチフェロ磁気構造の解析結果を表 4.5.1 に示す. それぞれの鉄サイトにおける Sc 濃度,磁気モーメントの向き大きさが決定された.図 4.5.5 は具体的に出力した磁気モデルになる.磁気モーメントは c 軸成分をわずかに持つ, ab 面 内に横たわる結果となり,このような想定したスピンキャント磁気構造となった.また, 解析の結果, Sc は相対的に 4f₂ に優先的に置換されることが分かった.

サイト	Sc濃度	а	Ь	С	磁気モーメント(µ _B)
2 <i>a</i>	0.012(0)	-5.210(0)	-0.660(0)	0.890(0)	4.990(0)
2 <i>b</i>	0.018(8)	-5.270(1)	-3.470(1)	0.730(1)	4.690(1)
$4f_1$	0.018(8)	5.260(0)	1.97(0)	0.66(1)	4.65(1)
$4f_2$	0.095(0)	5.070(0)	5.000(1)	0.410(1)	5.050(1)
12 <i>k</i>	0.050(4)	-5.210(1)	-0.660(1)	-0.730(1)	4.960(0)

表 4.5.1 x=0.193 のアンチフェロ磁気構造解析の結果

JANA2006から出力した結晶モデル図

図 4.5.5 6 K における, x=0.193 の磁気構造図

4.6 超交换相互作用

Ba(Fe1-xScx)12O19のアンチフェロ磁気構造を理解するため、ここでは磁性イオン間に働く 超交換相互作用について解説する.物質の磁性の起源は,原子を構成する電子にある.電 子の磁性は、軌道運動による軌道磁気モーメントと、自転によるスピン磁気モーメントで 構成されている.これら磁気モーメントの間に見かけの力が働いて、磁気モーメントを平 行,または反平行にすると自発磁化が発生する³⁾.交換相互作用の考え方は,磁性体のス ピン配列を理解する基礎となっている ^{4,5)}.酸化物では,磁性イオンの間に O²⁻があるので 相互作用は少し複雑な機構となり、酸素の 2p 電子を媒介にして働く 3, 6). このように O²⁻ を挟んで磁性イオン同士が行う交換相互作用を超交換相互作用という³⁾.これは, Kramers によって導入された概念であり、P. W. Anderson によって説明された⁷⁾. その要点は、O²⁻ は(1s)²(2s)²(2p)⁶という電子構造を持っているが、その1つのp軌道は図 4.6.1 に示すよう な両側の磁性イオン Fei³⁺, Fei³⁺まで伸びている. その p 軌道の1つの電子が磁性イオンで あり, 例えば Fei³⁺イオンに移行し, そのイオンが 3d 軌道に移る可能性がある. その際に, その電子のスピンは磁性イオンの中で Hund 則を満たさなければならないので,磁性イオ ンの 3d 電子数が半数(5個)以上であれば,移行した電子のスピンは磁性イオンの全スピ ンと逆向きでなければならない.他方, p 軌道に残された対の電子は Pauli の禁制律によっ て移行した電子と反対のスピンを持つが, この電子は, 他の磁性イオン (この場合 Fe;³⁺) と負の交換相互作用をおこない,磁性イオンのスピンを逆向きから,結果として Fe_i3+と Fe³⁺とのスピンは反平行になる.

超交換相互作用による磁気モーメント間のエネルギーE_{ii} は式(4.1)で表される.

$$E_{i,j}^{ex} = -J_{ij} S_i S_j \tag{4.1}$$

ここで J_{ij} は一組の磁気モーメント間の相互作用の強さを表す定数である交換積分, S は磁 気モーメント, i, j は層番号を表す. J_{ij} の正負に従って, 2 つのイオンの全磁気モーメン トは平行か反平行になる. J_{ij} の大きさと符合は,磁性イオン Fe_i^{3+} , Fe_j^{3+} の種類, Fe_i^{3+} , Fe_j^{3+} , O^2 の位置関係すなわち, Fe_i^{3+} - O^2 -, Fe_j^{3+} - O^2 -の距離 (Bond length) と Fe_i^{3+} - O^2 - Fe_j^{3+} の角度 (Angle) に依存する. それらの関係として特徴的なことを以下に示す.

- (1) Fe_i³⁺-O²⁻-Fe_j³⁺の角度が 180° に近いとき J_{ij}の符号は負でありその絶対値は最も大きい.
- (2) Fe_i³⁺-O²⁻-Fe_j³⁺の角度が 90°の場合には、磁性イオン同士の軌道が重なり合うので J_{ij} は原子間距離に依存して正または負の小さな値をとる.
- (3) Fe³⁺イオン間の超交換相互作用は他のイオン間に比べて大きい⁶.

図 4.6.1 Fe³⁺磁気モーメントの超交換相互作用 ^{17, 19)}

4.7 BaFe12O19の超交換相互作用

図 4.7.1 に BaFe₁₂O₁₉の 110 断面図を示す.空間群は P6₃/mmc (No.194) に属す.×は対称 中心, ーは鏡映面, 3は 3 回軸を表す. S, S*, R, R*はイオンのサブブロック (副格子) である. *j* はイオンの層番号, *z*=0, 1/4, 1/2 は結晶における *c* 軸方向の座標を表す.単位 格子は *c* 軸に沿って 2 つの等価な (S_{1/2} RS*_{1/2})ブロックに分割される.一つの (S_{1/2} RS*_{1/2}) ブロックが 1 分子式に相当する. イオンは *z*=0 から 1/4 の範囲で, *j*=1-11 層の順序で累積 し, *z*=1/4 から 1/2 の範囲で, *j*=11-1 層の順序で積み重なる. BaFe₁₂O₁₉の磁性の担い手は, 図 4.7.1 の *j*=1, 2, 5, 8, 9 層の Fe 磁気モーメントである.また, *c* 軸の磁気異方性をも つ.表 4.7.1 から磁気モーメントは, *j*=1, 5, 9 層では 0°を, *j*=2, 8 層では 180°の方向を向 く. これらの磁気構造は超交換相互作用によって決定される⁸).

図 4.7.1 での実線とその間の点は、BaFe₁₂O₁₉における 4 つの超交換相互作用 Fe(1)-O(3)-Fe(2), Fe(2)-O(3)-Fe(5), Fe(5)-O(6)-Fe(8), Fe(8)-O(11)-Fe(9)を示す. さらにこれまでの研究 でイオンの結合距離と結合角度を基に新たに見出した超交換相互作用 Fe(5)-O(7)-Fe(9)を 赤線で示す.また、これら 5 つの超交換相互作用をまとめたものを表 4.7.1 に示す. 負の超交換相互作用では O²⁻を挟んだ Fe³⁺同士が、磁気モーメントを反平行に向けること により安定化する.しかし、平行に配列している磁気モーメントは、超交換相互作用の立 場からは不安定である.これに反して、超交換相互作用 Fe(5)-O(7)-Fe(9)の磁気モーメント は平行に配列している. これは,他の超交換相互作用 Fe(5)-O(6)-Fe(8), Fe(8)-O(11)-Fe(9) と比較して Fe(5)-O(7)-Fe(9)は弱いためであると考えられる. 超交換相互作用 Fe(5)-O(7)-Fe(9)を相対的に強めることができれば,平行に配列している Fe(5)-O(7)-Fe(9)の磁気モー メントは角度配列することが見込まれる.

Sc³⁺を添加した Ba(Fe_{1-x}Sc_x)₁₂O₁₉ では磁気モーメントが斜めに配列したヘリカル磁性が 発現する.これは, Fe(5)-O(7)-Fe(9)が相対的に強いられ,3つの超交換相互作用 Fe(1)-O(3)-Fe(2), Fe(5)-O(6)-Fe(8), Fe(8)-O(11)-Fe(9)が競合するためであると考えられる.

図4.7.1 BaFe12O19の(110)断面図.

Configuration	Bond length	Angle (degree)	
Configuration	р	q	0
Fe(1)-O(3)-Fe(2)	0.2	0.19	125
Fe(2)-O(3)-Fe(5)	0.19	0.211	121
Fe(5)-O(6)-Fe(8)	0.193	0.197	128
Fe(8)-O(11)-Fe(9)	0.207	0.188	133
Fe(5)-O(7)-Fe(9)	0.198	0.214	119

4.8 Ba(Fe_{1-x}Sc_x)₁₂O₁₉のスピンキャント磁気構造で働く超交換相互作用

x=0.193 のスピンキャント磁気構造について,超交換相互作用で働く磁気モーメントの なす角度の変化に着目し、スピンキャント磁気構造の発生について考察する.表 5.5.2 は 鉄サイトにおける磁気モーメントの角度になる.図4.8.1 に x=0.193 の110断面図を示す. Fe(*j*)を*j*層目のFe³⁺の位置を表すとすると、x=0 における Fe(5)-Fe(9)間の磁気モーメント のなす角度は0°,Fe(8)-Fe(9)間では180°となる.一方、x=0.193 では、Fe(5)-Fe(9)間で は142°,Fe(8)-Fe(9)間では16°となり、x=0と反対の方向を向く結果となった.これらの 磁気モーメントのなす角度のSc添加による変化は、新たなFe(5)-Fe(9)間に働く超交換相 互作用を仮定することで説明される.即ち、Sc置換により、新たに仮定したFe(5)-O(7)-Fe(9)に働く超交換相互作用が相対的に強化されたため、スピンキャント磁気構造が発生し たと考えられる.

図 4.8.1 x=0.193 の110断面の拡大モデル図

Sc 濃度	磁気モーメントのなす角度				
パス	Fe(1)-O(3)-Fe(2)	Fe(2)-O(3)-Fe(5)	Fe(5)-O(6)-Fe(8)	Fe(8)-O(11)-Fe(9)	Fe(5)-O(7)-Fe(9)
x=0	180°	180°	180°	180°	0°
x=0.193	162°	166°	140°	23°	142°

表 4.8.1 x=0,0.193 における鉄サイト間の磁気モーメントの成す角度

4.9 結言

結晶,および磁気構造解析により,空間群,格子定数を決定した.296 K における BaFe₁₂O₁₉の分子式あたりの磁気モーメントが磁化測定の結果と一致した.また,Ba(Fe_{1-x}Sc_x)₁₂O₁₉(x=0.193)のアンチフェロ磁気相の磁気構造解析を実施した.その結果,信頼度因子 R が結晶で R_{crystal}=8,磁気で R_{magnetic}=16の高信頼度の磁気モデルが決定された.これによると,各サイトの磁気モーメントは,わずかに c 軸成分を持つスピンキャント磁気構造となった.また,2b,4f₂サイトに優先的に Sc が置換されることにより,想定した Fe(5)-O(7)-Fe(9)の超交換相互作用が相対的に強化され,スピンキャント磁気構造が発生したと考えられる.すなわち,Fe(5)-O(7)-Fe(9)の超交換相互作用の存在が示唆された.

参考文献

- T. Ohhara, R. Kiyanagi, K. Oikawa, K. Kaneko, T. Kawasaki, I. Tamura, A. Nakao, T. Hanashima, K. Munakata, T. Moyoshi, T. Kuroda, H. Kimura, T. Sakakura, C.-H. Lee, M. Takahashi, K. Ohshima, T. Kiyotani, Y. Noda, M. Arai, SENJU: a new time-of-flight single-crystal neutron diffractometer at J-PARC, J. Appl. Cryst. 49 (2016) 120-127, https://dx.doi.org/10.1107/S1600576715022943
- Václav Petříček, Michal Dušek and Lukáš Palatinus, Crystallographic Computing System JANA2006: General features, journal Zeitschrift für Kristallographie - Crystalline Materials, 5 (2014) 229, https://doi.org/10.1515/zkri-2014-1737
- 3) 太田恵造, "磁気工学の基礎 I", 共立出版株式会社 (1973), p9, p10, p178, p192, p193.
- 4) 一ノ瀬昇, "フェライト技術の系統化", 独立行政法人 国立科学博物館 (2009), p149.
- 5) 小林久理眞, "したしむ磁性", 株式会社朝倉書店(1999), p47.
- 6) 平尾貞太,奥谷克伸,尾島輝彦,"フェライト",丸善株式会社(1986), pp1-4, p12, p17.
- 7) J. Smit and H. P. J Wijn, "Ferrites", Philips' Technical Library (1959).
- S. Utsumi, D. Yoshiba, N. Momozawa, "Superexchange Interactions of (Ba_{1-x}Sr_x)₂Zn₂Fe₁₂O₂₂ System Studied by Neutron Diffraction.", J. Phys. Soc. Jpn., 76, 034704 (2007).

第5章 結論

M型六方晶フェライト BaFe12O19に非磁性の Sc³⁺を添加した Ba(Fe1-xScx)12O19は、非磁性 の Sc³⁺が結晶学的に異なる 5 つの Fe³⁺サイトに分布することで、様々な異なる磁性を示す ことが知られている.特に、特定の物理条件下で発現するヘリカル磁性は、同時に強誘電 性も示すことから、次世代のエレクトロニクス素子への応用が期待されるマルチフェロイ ックス物質として注目されている.このため、様々な条件下における磁性の変化に関して は、さらなる研究が望まれている.しかしながら、ヘリカル磁性が発現する物理条件(温 度領域や Sc 濃度)などについて、統一的な研究はなされていない.このような現状に対 し、本研究では、大型で良質な M型六方晶フェライトの単結晶 Ba(Fe1-xScx)12O19を使用し て、様々な Sc 濃度、及び温度下でマクロな磁化測定を行い、磁気転移温度および、常磁性 転移温度を決定した.また、詳細な中性子回折の温度変化実験から、様々な Sc 濃度 x 結晶 における、磁気相転移温度を正確に決定し、Ba(Fe1-xScx)12O19の温度 T. Sc 濃度 x で決定さ れる磁気相図を明らかにすることに成功した.この結果、磁気相図上でヘリカル磁性が発 現する領域に着目すると、室温を含む比較的広い領域でヘリカル磁性が発現することが分 かり、新型メモリやエネルギー変換デバイスなどの次世代のエレクトロニクス素子への応 用が期待できる結果となり、学術的にも工業的にも意義のある結果となった.

また,様々な Sc 濃度 x における中性子回折の温度変化測定から,Ba(Fe_{1-x}Sc_x)₁₂O₁₉の Incommensurate な磁気周期構造を決定した.具体的には,Ba(Fe_{1-x}Sc_x)₁₂O₁₉の円錐型ヘリカ ル磁性を特徴づける,結晶学的に等価な磁気モーメントの回転角 ϕ_0 の Sc 濃度 x と温度 T 依 存性を調査し,詳細に決定した.これによると ϕ_0 は,温度上昇とともに減少する傾向を示 した.また,x>0.15 では高温側で複数の ϕ_0 を示した.このことは,熱振動,及び Sc 濃度の 不均一性による影響が考えられる.また ϕ_0 は,低角で 0°~90°,高角で 170°~180°の範囲は 取らないことが分かった. ϕ は温度が低下すると大きくなるが,それ以上は取れない閾値 が存在するため,低温側で閾値に向けて収束する結果となった.

また,結晶磁気構造解析により,Ba(Fe_{1-x}Sc_x)₁₂O₁₉のフェリ磁性やアンチフェロ磁性など の Commensurate 構造における結晶・磁気構造を詳細に決定することに成功した.その結 果,アンチフェロ磁性である x=0.193 (6 K)の磁気構造は,磁気モーメントが ab 面に横た わる,がわずかに c 軸成分を持つスピンキャント磁気構造であることが分かった.磁気構 造解析の結果算出された,各 Fe サイト間の磁気モーメントのなす角度を算出し,x=0のフ ェリ磁性と x=0.193 のスピンキャント磁気構造との比較を行った.その結果,新たに Fe(5)-O(7)-Fe(9)の超交換相互作用の存在が示唆された.すなわち,2b,4f₂サイトに優先的に Sc が置換されることにより,想定した Fe(5)-O(7)-Fe(9)の超交換相互作用が相対的に強化され ることで,スピンキャント磁気構造が発生したと考えられる.

また, Ba(Fe_{1-x}Sc_x)₁₂O₁₉の強誘電性の可能性について検証した.本研究では,実験による 電気分極の測定は実施していないが,イオンの原子配置から電気分極の傾向を調査した. 図 5.1.2 は、X 線構造解析の結果算出された、室温における各 Fe サイトにおける Fe-O 間の原子間結合距離の Sc 濃度 x の依存性である.この結果、2b、4f2 サイトで Sc 濃度増加に 伴い、結合距離の相対的なズレが顕著となり、室温における Ba(Fe_{1-x}Sc_x)₁₂O₁₉ のマルチフ エロイックスの可能性が示唆される結果となった.

残された課題は、Ba(Fe_{1-x}Sc_x)₁₂O₁₉の Incommensurete な磁気構造の解明である. すなわち、本研究で成功した、Commensurate な磁性に関する磁気構造解析を発展させ、 Incommensurete な磁気構造における Sc 置換優先順、磁気モーメントの向き大きさを決定

し、超交換相互作用の大きさを具体的に算出することで、ヘリカル磁性の発現機構を解明 することである.更なる展望として、表 5.1 のような、マルチフェロイックス材料を用い た、新しい動作原理に基づく、デジタル素子や、低電力消費となる電子デバイス等の効率 的な材料設計へ繋げる.

図 5.1.1 本研究の成果と残された課題

表 5.1 デバイスへの可能性とマルチフェロイックス効果 1)

素子名	機能	マルチフェロイックス効果
可変インダクタ ので、 ので、 ののでで のので のの	ネジ構造のフェライトコア位 置を変化させることにより, インダクタンスの容易な変更 を実現したコイル素子であ る.	電界の印加によって磁化を変化させることが可 能となる,高速,低消費電力素子が実現される.
磁気ヘッド ^(5/52)	磁気テープに, 電気信号を磁 気信号として記録させる素 子, 記録されている磁気信号 を電気信号に変換する素子, および磁気信号を消去する素 子である.	電気信号と磁気信号双方の効率的な変換が可能 になり,高速,低消費電力素子が実現される.
磁気センサ	一般的に磁界の大きさや変化 量を電気信号として変換する ことで磁気を測定する素子で ある.	これまでにない微小磁場による電気分極が制御 できるため,より 高感度 の磁気センサーが実現 される.
不揮発性メモリ	データの記憶に用いられる半 導体メモリの分類の一つで, 外部からの電力供給がなくて も記憶内容を維持することが できるメモリ素子である.	電気のプラスかマイナスの 2 択による記録情報 に加え,磁極の N 極 S 極が増えの 4 択となり, 4 ⁿ ビットに増加する.記録情報の 高密度化 が期 待できる.

図 5.1.2 各 Fe サイトの原子間結合距離 (Fe³⁺~O²⁻間)

参考文献

1) "電子部品 村田製作所", <u>https://www.murata.com/ja-jp/products/</u>(2022 年 2 月 10 日ア クセス).

投稿論文

主論文

- K. Maruyama, S. Tanaka, S.Natori, I. Bizen, K. Amemiya, R. Kiyanagi, A. Nakao, K. Moriyama, Y. Ishikawa, Y. Amako, T. Iiyama, R. Futamura, S. Utsumi, Magnetic phase diagram of helimagnetic Ba(Fe_{1-x}Sc_x)₁₂O₁₉ (0 ≤ x ≤ 0.2) hexagonal ferrite, Journal of Alloys and Compounds, 892, 162125, (2021), pp. 162125-1-162125-8. →1章, 2章, 3章に関する論文
- K. Maruyama, S. Tanaka, R. Kiyanagi, A. Nakao, K. Moriyama, Y. Ishikawa, S. Utsumi, Helimagnetism of Ba(Fe_{1-x}Sc_x)₁₂O₁₉ studied by magnetization measurement and neutron diffraction, JPS Conference Proceedings, 33, 011061, 011061-1 - 011061-1-6 (2020). →2章, 3章に関する論文

参考論文

 S. Utsumi, S Tanaka, K. Maruyama, N. Hatakeyama, K. Itoh, J. Koike, A. Horikawa, H. Iriyama, H. Kanamaru, Y. Amako, T. Iiyama, R. Futamura, R. Kiyanagi, A. Nakao, K. Moriyama, Y. Ishikawa, N. Momozawa, Flux Growth and Magnetic Properties of Helimagnetic Hexagonal Ferrite Ba(Fe_{1-x}Sc_x)₁₂O₁₉ Single Crystals, ACS Omega ,5 ,38, 24890-24897 (2020). →1 章に関する論文

学会発表

- 田中誠也(発表者),丸山健一,内海重宜,鬼柳亮嗣,石川喜久, "Ba(Fe_{1-x}Sc_x)₁₂O₁₉ (x=0.153, T=4 K)の incommensurate ヘリカル磁気構造解析", 2021 年度量子ビームサ イエンスフェスタ, 2022 年 3 月
- 2) 丸山健一(発表者),田中誠也,内海重宜,"六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉のアン チフェロ磁気構造",2021年材料技術研究協会討論会,2021年12月2日,オンライン
- 3) 丸山健一(発表者),田中誠也,鬼柳亮嗣,中尾朗子,森山健太郎,石川喜久,内海重 宜,"六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉で発現するヘリカル磁性の回転角に関する研 究",第45回日本磁気学会学術講演会,2021年9月1日,オンライン
- 4) 丸山健一(発表者),田中誠也,鬼柳亮嗣,中尾朗子,森山健太郎,石川喜久,内海重 宜,"六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気相図",第44回日本磁気学会学術講演 会,2020年12月15日,オンライン
- 5) 田中誠也(発表者),丸山健一,内海重宜,"六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉の磁気 相図と結晶構造解析",2020年材料技術研究協会討論会,2020年12月4日,オンライ ン
- 6) 丸山健一(発表者),田中誠也,桃澤信幸,内海重宜,"中性子回折および磁化測定による 六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉のヘリカル磁性の研究",2019年材料技術研究 協会討論会,2019年12月5日,日本大学駿河台キャンパス
- 7) 田中誠也(発表者),丸山健一,内海重宜,"六方晶フェライト Ba(Fe_{1-x}Sc_x)₁₂O₁₉の単結 晶育成と磁気的性質",第43回日本磁気学会学術講演会,2019年9月27日,京都大学 吉田キャンパス
- 8) K. Maruyama(Presenter), S. Tanaka, R. Kiyanagi, A. Nakao, K. Moriyama, Y. Ishikawa, S. Utsumi, Helimagnetism of Ba(Fe_{1-x}Sc_x)₁₂O₁₉ studied by magnetization measurement and neutron diffraction, The 3rd J-PARC Symposium, Sept. 24th , 2019, Main Hall, Tsukuba International Congress Center.
謝辞

本研究を進めるにあたり,非常に魅力的で興味深い研究テーマを与えていただき,日頃 から熱心なご指導ご鞭撻を賜りました,公立諏訪東京理科大学工学部機械電気工学科 内 海重宜教授に心から感謝致します.

また,公立諏訪東京理科大学工学部機械電気工学科 大島政英教授,平田陽一教授,渡 邊康之教授,同工学部情報応用工学科 三代沢正教授,同共通・マネジメント教育センタ ー 松岡隆志教授,並びに東京理科大学理工学部先端化学科 藤本憲次郎准教授の諸先生 方より本論文の内容について,懇切丁寧なるご指導を賜りました.諸先生方に対し,心か ら感謝の意を申し上げます.

また、本研究は単結晶育成を公立諏訪東京理科大学工学部機械電気工学科、単結晶の VSM による磁化測定を長野県工業技術総合センター、SQUID による磁化測定を信州大学 理学部理学科 物理学コース 天児寧教授の研修室にて行わせて頂きましたことを、ここ に感謝致します.

また, SQUID による磁化測定で便宜を図っていただき,本研究に多大なご協力を賜りま した,信州大学理学部理学科 化学コース 飯山拓教授,二村竜祐助教に深く御礼申し上 げます.

中性子回折実験は J-PARC の物質・生命科学実験施設でユーザープログラム(課題番号 2018B0073, 2019A0211, 2019B0098, 2020A0034)の下で行われました.

また,中性子回折実験において日本原子力研究開発機構 鬼柳亮嗣様,一般財団法人総 合科学研究機構 中尾朗子様,森山健太郎様,石川喜久様には具体的な解析手法や,数々 の有益なご意見を賜りました.心から感謝致します.

最後に,共に研究活動を行った博士課程の田中誠也君,学部の金丸始君,雨宮佳祐君, 備前郁哉君,岡村匠真君,及び藤倫太郎君,内海研究室の方々,本論文の執筆にあたり, サポートしてくださった全ての友人・家族に心から感謝の意を申し上げます.